Центральный научно–исследовательский институт строительных конструкций им. В.А. Кучеренко (ЦНИИСК им. В.А. Кучеренко) Госстроя СССР

Справочное пособие к СНиП

Серия основана в 1989 году

Проектирование асбестоцементных конструкций

Москва Стройиздат 1990

Рекомендовано к изданию секцией легких конструкций научно–технического совета ЦНИИСК им. В.А. Кучеренко.

Разработано ЦНИИСК им. В.А.Кучеренко Госстроя СССР (кандидаты техн. наук Л.Н.Пицкель – разд. 1 – 7; Ю.Ц.Гохберг – разд. 1 – 4, 7; Н.Н. Поляков – разд. 4, 7; С.Б. Ермолов и Л.В. Суровова – разд. 7; инж. П.М. Киселев – разд. 7); ЦНИИЭПсельстроем Госагропрома СССР (канд. техн. наук Ю.А.Муравьев, инж. В.Н. Аверьянов – разд. 4 и прил. 2); НИИСФ Госстроя СССР (канд. техн. наук И.Г.Кожевников – разд. 6); ВНИИПроектасбестоцементом (канд. техн. наук И.Н. Иорамашвили, инженеры В.И. Пивко, Н.И.Зельвянская – прил. 1). Под общей редакцией кандидатов техн. наук Л.Н. Пицкеля и Ю.Ц. Гохберга.

Редактор И.А. Баринова

Разработано к СНиП 2.03.09–85 "Асбестоцементные конструкции". Содержит рекомендации по расчету и проектированию конструкций. Даны примеры расчета наиболее распространенных асбестоцементных конструкций. Приведены номенклатура конструкций и основные области их применения.

Для инженерно–технических работников проектных и строительных организаций.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее справочное пособие дает рекомендации по расчету и проектированию асбестоцементных конструкций следующих типов:

плоских и волнистых (профилированных) листов, сводчатых оболочек волнистого профиля, изготовляемых из листового асбестоцемента на листоформовочных машинах;

плит и панелей комплексных каркасных и бескаркасных (трехслойных) с облицовками из плоских асбестоцементных листов;

многопустотных плит и панелей, а также погонажных изделий (швеллеров, подоконных досок, плинтусов и других деталей), изготовляемых по экструзионной технологии.

1.2. Текст СНиП 2.03.09. – 85 отмечен в Пособии соответствующим номером пункта в квадратных скобках; ссылки на пункты, таблицы, формулы и чертежи данного СНиПа приведены также в квадратных скобках.

В прил. 1 к СНиП 2.03.09. – 85 приведены рекомендации по основному и допустимому применению рассматриваемых конструкций в различных частях зданий и сооружений. При выборе типов конструкций следует учитывать физико–механические характеристики асбестоцемента и конструкций из этого материала, технико–экономические показатели конструкций.

1.3. Асбестоцементные конструкции и изделия должны применяться только при наличии проекта производства строительных работ, составленного на основе действующих нормативных документов и рекомендаций по хранению, транспортированию, монтажу и эксплуатации этих конструкций.

Правильно спроектированные, смонтированные и эксплуатируемые асбестоцементные конструкции, как показывают натурные обследования, имеют срок службы 30 – 50 лет.

1.4. [1.2]. Конструкции должны проектироваться с учетом их заводского изготовления.

Это требование связано с особенностью производства конструкций. Волнистые и плоские листы, экструзионные плиты и панели изготовляются на технологических линиях производительностью более 500 тыс. м2/год. Каркасные и бескаркасные плиты и панели также производят в специализированых цехах, производительностью 50–100 тыс. м2/год на предприятиях строительной индустрии.

В обоих случаях продукция выпускается в соответствии с ГОСТами или ТУ, с последующим техническим контролем.

Изготовление каркасных или бескаркасных комплексных конструкций непосредственно на строительной площадке может допускаться только в исключительных случаях, на требуемом техническом и организационном уровне, с проведением соответствующих контрольных испытаний.

1.5. [1.4]. Асбестоцементные конструкции следует рассчитывать по несущей способности (предельным состояниям первой группы) и по деформациям (предельным состояниям второй группы).

Исследованиями установлено, что асбестоцемент – листовой и экструзионный – с достаточный для практики точностью может приниматься при расчетах как материал, характеризующийся линейной зависимостью между напряжениями и деформациями. Оба предельных состояния имеют место практически для всех асбестоцементных конструкций; для многих определяющим является второе, как следствие больших линейных деформаций материала при увлажнении, что сформулировано в [п. 1.7].

1.6. [1.8]. При проектировании асбестоцементных конструкций, эксплуатируемых в условиях агрессивных сред, следует предусматривать защиту их и элементов крепления к несущему каркасу здания от коррозии в соответствии с требованиями СНиП 2.03.11 – 85.

Согласно СНиП 2.03.11 – 85 защита асбестоцементных конструкций требуется при средней или сильной агрессии. Согласно [п. 6.16] поверхности асбестоцементных конструкций (плит и панелей всех видов) рекомендуется защищать от увлажнения с целью уменьшения влажностных деформаций. Эту защиту следует применять во всех случаях, вне зависимости от величин влажностных деформаций.

1.7. [1.9]. Плиты и панели каркасные и экструзионные следует применять при температуре нагрева их поверхности не более 80 оС.

Это ограничение температуры нагрева связано с требованиями ограничения ползучести асбестоцемента, возрастающей при повышении температуры.

1.8. [1.10]. Плиты и панели бескаркасные следует применять при температуре внутренней поверхности конструкций не более 30 °С и при температуре наружной поверхности не более 80 °С.

Ограничение температуры нагрева внутренней поверхности конструкций связано с резким уменьшением расчетных характеристик пенопластов при действии повышенных температур.

1.9. [1.11]. Свободно лежащие плоские и волнистые листы следует применять при температуре не более 100 °С.

Увеличение допускаемой температуры для асбестоцемента с 80 °С (см. п. 1.7 Пособия) до 100 °С связано с тем, что для листов разрешается больший прогиб, чем для плит и панелей [см. табл. 7].

2. МАТЕРИАЛЫ

2.1. По [пп. 2.1 и 2.2] асбестоцементные плоские и волнистые (профилированные) листы, применяемые в ограждениях, являются самостоятельными конструкциями (см. прил. 1). Плоские листы, используемые в плитах и панелях, являются материалом для этих конструкций.

2.2. [2.4]. Для плит и панелей каркасных и экструзионных необходимо использовать минераловатный или стекловатный утеплитель на синтетическом связующем, а также при наличии технико–экономических обоснований другие теплоизляционные материалы.

Минераловатные утеплители рекомендуется применять в виде матов, что улучшает долговечность конструкций и условий труда при их производстве.

2.3. Перечень пенопластов, применяемых в асбестоцементных конструкциях, и расчетные характеристики пенопластов приведены в [прил. 2].

3. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

3.1. [3.1]. Расчетные сопротивления листового асбестоцемента следует принимать по [табл. 1], экструзионного асбестоцемента – по [табл. 3].

При определении расчетных сопротивлений листового асбестоцемента по [табл. 1] величину временного сопротивления (предела прочности асбестоцемента изгибу) следует принимать по государственным стандартам или техническим условиям, при этом величину временного сопротивления асбестоцемента плоских листов необходимо умножить на коэффициент 0,9.

Это требование вызвано особенностью стандартной методики испытаний, предусматривающей испытания образцов, вырезанных из плоских листов, в двух направлениях – вдоль и поперек листа. За предел прочности принимается полусумма результатов этих двух испытаний.

Определим расчетные сопротивления R листового плоского непрессованного асбестоцемента.

Таблица 1

Элемент плиты

Величина напряжений, МПа/(кгс/см2), от действия

Величина напряжения b, МПа, от действия

Величина

постоянной нагрузки

временной длительной снеговой нагрузки

кратковременной снеговой нагрузки

ветровой нагрузки

влажностных воздействий

постоянных и длительных нагрузок

неблагоприятного сочетания всех нагрузок и воздействий

Нижняя полка

0,8

(8)

1,2

(12)

1

(10)

0,3

(3)

–0,7

(–7)

2

(20)

3,3

(33)

0,62

Ребро

0,64

(6,4)

0,96

(9,6)

0,8

(8)

0,24

(2,4)

3,06

(30,6)

1,6

(16)

5,7

(57)

0,78

По ГОСТ 18124 – 75 (СТ СЭВ 827 – 77) предел прочности должен быть не менее 18 МПа. Тогда, умножая = 18 МПа на 0,9, получим исходную для определения R по [табл. 1] величину = 180,9 = 16,2 МПа. Пользуясь ближайшим к до = 16,2 МПа табличным значением R = 16 МПа, находим по нему соответствующие значения расчетных сопротивлений листового асбестоцемента: Rm = 14 МПа, Rmt = 11,5 МПа, Rt = 6 МПа.

3.2. Расчетные сопротивления асбестоцемента следует умножать на следующие коэффициенты условий работы:

а) по [п. 3.2а] для асбестоцементных конструкций, проверяемых на воздействие постоянных, временных длительных и кратковременных нагрузок, – на коэффициент , равный:

,

где – нормальные напряжения от действия постоянных, временных длительных и кратковременных нагрузок;

– нормальные напряжения от действия постоянных и временных длительных нагрузок.

По данным расчета экструзионной плиты определим значения для различных элементов конструкций при неблагоприятных сочетаниях нагрузок и воздействий (см. табл. 1).

При линейной зависимости между нагрузками и напряжениями допускается определять, принимая вместо напряжении нагрузки, их вызывающие;

б) по [п. 3.2б] для конструкций, находящихся в условиях атмосферного увлажнения (подверженных действию капельной влаги) и в помещениях с мокрым и влажным режимом, принимаемым по СНиП II–3–79**, при защите наружных поверхностей конструкций влагонепроницаемыми покрытиями – на коэффициент = 0,9; при отсутствии защиты для конструкций из листового асбестоцемента – на = 0,8; для конструкций из экструзионного асбестоцемента – на = 0,65.

3.3. При назначении коэффициента = 0,9 для расчетных сопротивлений асбестоцемента элементов конструкций и при защите влагонепроницаемыми покрытиями следует учитывать вид покрытия и вид влажностных воздействий. Различают влажностные воздействия, вызванные действием капельной влаги и воздушным увлажнением [по табл. 6]; различают покрытия, непроницаемые как для жидкой, так и парообразной влаги, и покрытия, непроницаемые только для жидкой или только для парообразной влаги. Так, например, если покрытие (например, краска) защищает наружную обшивку (полку) плиты или панели лишь от жидкой влаги, то коэффициент = 0,9 следует использовать при определении расчетного сопротивления материала обшивки (полки) при ее расчете только на увлажнение капельной влагой [табл. 6]; при воздушном же увлажнении обшивки (полки) плиты или панели следует вводить коэффициент = 0,8 или = 0,65.

3.4. [3.7]. Определяемое для асбестоцемента, защищенного от увлажнения, значение умножают на коэффициент 0,75.

При введении коэффициента = 0,75 к значению влажностных линейных деформаций асбестоцемента, защищенного от увлажнения, следует принимать во внимание соображения об учете вида защитного покрытия и вида увлажнения, изложенные в п. 3.3.

4. РАСЧЕТ ЭЛЕМЕНТОВ АСБЕСТОЦЕМЕНТНЫХ КОНСТРУКЦИЙ

4.1. По [п. 4.1] проверку прочности элементов асбестоцементных конструкций следует производить из условия обеспечения в элементах напряжений, не превышающих расчетные сопротивления (с соответствующими понижающими коэффициентами) при суммарном учете силовых и температурно – влажностных воздействий.

В соответствии с особенностями конструктивных решений в п. 4.1 СНиП 2.03.09 – 85 приводятся формулы для проверки прочности обшивок каркасных, бескаркасных плит и панелей, полок экструзионных плит и панелей, заполнителя бескаркасных панелей, клеевых соединений обшивок с каркасом, плоских и волнистых листов.

4.2. По [п. 4.2] расчет асбестоцементных каркасных конструкций проводится с учетом податливости соединений между обшивками и каркасом. Ниже приводится последовательность проведения расчета.

Значения напряжений в обшивках и каркасе определяются по формулам [11] – [14].

Определение напряжений в расчетном сечении при наличии податливости в соединениях обшивок с каркасом производится в два этапа, причем при назначении расчетного сечения каркасной плиты или панели учитывается только часть ширины обшивок, редуцируемых к ребрам [см. п. 4.3].

Первый этап расчета носит предварительный характер и заключается в определении коэффициента податливости связей т в указанных выше формулах. Находят положение нейтральной оси по формуле [24]. Определяется момент инерции расчетного сечения и статические моменты обшивок и относительно найденной нейтральной оси по [п. 4.7].

По формуле [21] и [22], в которой следует заменить b на и на , определяют значение т. При этом формула [21] принимает вид:

(1)

а формула [22]:

(2)

где – момент инерции каркаса относительно собственной оси.

Формула (1) используется для определения коэффициента m при расчете изгибаемых конструкций, за исключением случая чистого изгиба (постоянная эпюра изгибающих моментов на всем пролете).

При расчете свободно опертой каркасной плиты или панели на действие равномерно распределенной нагрузки следует пользоваться формулой (2).

Коэффициент т может иметь разное значение по длине конструкции, отрезок которой определяется начальным и конечным (для этого отрезка) изгибающими моментами. Рекомендуется принимать отрезок СВ, на котором эпюра поперечных сил однозначна.