• размещение и сечение арматуры;

• расстояние между несущими конструкциями;

• вид и толщину наката, лаг, смазка, засыпка (деревянные перекрытия);

• толщину плит и сводов.

2.5.9. Прочность бетона железобетонных и кладки кирпичных элементов перекрытий определяется ударным или ультразвуковым (или комплексно ультразвуковым и радиометрическим) методом (приложение №3).

2.5.10. Состояние древесины определяется лабораторными исследованиями образцов, высверленных в деревянных балках диаметром 200 мм на всю высоту балки или размером 15 х 5 х 2 см.

2.5.11. Испытание перекрытий пробной нагрузкой выполняется при несоответствии требуемых расчетных данных и фактического состояния конструкций. Для проведения испытаний освобожденные от вспомогательных элементов несущие конструкции (балки, плиты, своды) загружаются пробной нагрузкой последовательно и равномерно ступенями по 10 - 15 % контрольной нагрузки с интервалами в 20 мин и выдерживают конструкцию под нагрузкой в течение 1 часа с последующей разгрузкой в обратной последовательности. Контрольная нагрузка (qк) составляет

qк =q-1.1 qс.в =1.4 qмл (2.7.)

где q суммарная расчетная нагрузка;

qс.в нагрузка от собственного веса;

qмл полезная нагрузка;

k=1.1-1.4 коэффициент перегрузки.

Загружение производится кирпичом, песком, мелкоразмерными плитами.

2.6. Обследование балконов, лоджий, козырьков, каркасов.

2.6.1.В зависимости от цели обследования здания состав работ по обследованию балконов, лоджий, козырьков и карнизов принимается по таблице 2.15.

Таблица 2.15. Состав работ при обследовании балконов.

Цель обследования здания

Выполняемые работы

Выявление состояния балконов при постановке здания на капитальный ремонт

Осмотр конструкций

Вскрытое

Выявление причин деформации балконов

Выявление характера деформации

Испытание пробной нагрузкой

2.6.2. Осмотр конструкций предполагает выявление конструкций балконов, их примыканий к стенам и перекрытием, состояния и деформативность конструктивных элементов.

В зависимости от расчетных схем элементов балконов обращается внимание на:

• при консольной схеме - состояние консоли в месте заделки в стену;

• при схеме консоль с подкосом или подвеской - состояние подкоса или подвески, узел их соединения с консолью, состояние заделки консоли в стену, состояния консоли в середине пролета, заделку низа подкоса или верха подвески в стену;

• при схеме балки на двух опорах - сечение балки в середине пролета, состояния балки у опоры.

2.6.3. При обследовании железобетонных балконов производятся натурные испытания прочности, наличие и сечения арматуры с применением неразрушающих методов (приложение №3). Наблюдение за трещинами и их развитием проводится аналогично описанию в п. 2.2.

2.6.4. При несоответствии расчетных сечений принятых в конструкции балконов производится проверка их несущей способности пробной нагрузкой, соответствующей указанной и по методике, описанной в п. 2.5.11.

При возможности использования рассматриваемой методики применяется способ провешивания грузов на тросах, укрепленных у края балок. Вес грузов, подвешиваемых к балкону, вычисляют по формуле:

(2.8)

где qk: контрольная нагрузка на 1 м2;

l длина консоли балкона;

с расстояние от места подвески груза до грани стены, м;

а длина участка балкона, с которого передается распределение нагрузки.

Состояние конструкции после приложения нагрузки фиксируется прогибомерами и мессурами (приложение 3).

2.6.5. Обследование эркеров и лоджий заключается в осмотре, проверке опорных балок и подкосов, определении наличия и размеров трещин в местах примыкания к стенам здания, установлении состояния гидроизоляции.

2.6.6. При обследовании неоштукатуренных карнизов из напуска кирпича обращается внимание на состояние растворов кладке; при оштукатуренных карнизах выявить наличие трещин. Карнизы, как правило, осматриваются с балконов верхних этажей биноклем.

2.6.7. При осмотре козырьков обращается внимание на техническое состояние стоек, консолей, подкосов, кронштейнов и подвесок, а также на кровлю козырька.

2.7. Обследование крыш.

2.7.1. Цель обследования крыш - установление типа и материала стен, определение системы распределения нагрузок, оценка состояния и возможности дальнейшей эксплуатации несущих конструкций.

2.7.2. При обследовании несущих конструкций крыш выполняются работы:

• Осмотры и обмеры конструкций с составлением планов;

• выявление типа несущих систем (висячие или наклонные стропила, фермы, прогоны и пр.);

• определение типа кровли, соответствия уклонов крыши материалу кровельного покрытия, состояния водостоков;

• оценка деформаций несущих элементов крыш.

2.7.3. При осмотре деревянных ферм и стропил обращают внимание на состояние древесины, наличие гидроизоляции между деревянными и каменными конструкциями.

2.7.4. Металлические конструкции осматриваются для выявления коррозии и ослаблений прогибов.

2.7.5. При осмотре железобетонных панелей обращается внимание на трещины, нарушения защитного слоя, неплотность между настилами покрытия, состояние утеплителя.

2.7.6. Кровля обследуется на предмет протечек, оценки состояния защитного слоя, сохранности гидроизоляционного ковра.

2.8. Обследование лестниц.

2.8.1.В зависимости от цели обследования зданий принимается состав работ по обследованию лестниц (таблица 2.16).

Таблица 2.16. Состав работ при обследовании лестниц

Цель обследования здания

Выполняемые работы

Капитальный ремонт

Осмотр лестниц

Деформация лестниц

Осмотр лестниц

Выполнение вскрытий

Установление причин деформации

2.8.2. При обследовании лестниц устанавливаются:

• тип лестниц по материалу и особенностям конструкций;

• конструкция сопряжения элементов лестниц;

• состояние, прочность элементов лестниц;

• состояние и надежность крепления лестничных решеток;

• наличие и зона поражения гнилью и вредителями древесины при деревянных лестницах.

2.8.3. Прочностные характеристики и закладной металл определяются с помощью неразрушающих методов. Прогибы несущих элементов между устанавливаются с применением прогибомеров и нивелира (приложение 3).

Достигнутые прогибы сравниваются с допустимыми, приведенными в таблице 2.17.

Таблица 2.17. Максимально допустимые прогибы лестниц

Элементы лестниц

Прогиб при пролете

менее 5м

от 5 до 7 м

выше 7 м

Балки, марши, косоуры

1/200

1/300

1/400

2.8.4. При осмотре лестниц из сборных железобетонных элементов определяются:

• состояние заделки лестничных площадок в стены;

• состояние опор лестничных маршей и металлических деталей в местах сварки;

• наличие и зона распространения трещин и повреждений на лестничных площадках.

2.8.5. При осмотре каменных лестниц по металлическим косоурам устанавливается:

• состояние и прочность заделки в стене лестничных площадок;

• коррозия стальных связей;

• состояние кладки в местах заделки балок лестничных площадок.

2.8.6. При бескосоурных висячих каменных лестницах проверяются состояние и прочность заделки ступеней в кладке стен.

2.8.7. При осмотре деревянных лестниц по металлическим косоурам и деревянным тетивам устанавливаются:

• состояние и прочность заделки в стене балок лестничных площадок;

• надежность крепления тетив к балкам;

• состояние древесины тетивы, ступеней, балок с учетом возможного поражения древесины.

3. Технические средства испытания материалов и конструкций

Для получения объективной информации о качестве материала и состоянии основных несущих конструкций при обследовании зданий нашли применение технические средства инструментального контроля физических, механических и геометрических характеристик, приведенных в таб. 3.1.

Таблица 3.1. Средства неразрушающего контроля состояния конструкций

Средства контроля

Контролируемые параметры

Принципы контроля

Завод- изготовитель

Ударный метод

1

Молоток Физделя

Прочность бетона, раствора, естественного камня, изверженных пород (гранит, сиенит, диабаз и пр.)

По тарировочной кривой по среднему значению диаметра 10-12 отпечатков при ударе по поверхности конструкций. Точность ±50 %

2

Молоток Кашкарова

То же

По тарировочной кривой по среднему значению отношений из 10-12 отпечатков на испытательном и эталонном материалах. Точность +70 %

3

Пистолет ЦНИИСКа склерометр КМ, склерометр Шмидта

То же

По тарировочной кривой по величине энергии отскока с начальной энергией 50 кг/см2 или 12.5 кг/см2 в зависимости от прочности испытываемого материала.

Точность ±65 %

ЭЗ ЦНИИСК

Метод вырыва

4

Прибор ГПНВ-5

Прочность бетона и других связных каменных материалов

По усилию вырыва стержня из тела испытываемого материала по тарировочной кривой определяется прочность бетона. Точность ±65 %

Промстройпроект

Метод контроля за трещинами

5

Рычажный маяк

Скорость развития трещин

Поворот стрелки относительно шкалы благодаря двум сводным шарнирам по обе стороны трещин.

6

Пластинчатый маяк

Скорость развития трещины

Смешение двух пластин относительно друг друга, закрепленных по обе стороны трещины

Ультразвуковой метод

7

Электронные приборы

УКВ-1М.

УК-14П

Прочность материала; статический модуль упругости; размеры структурных дефектов (трещины каверны и пр.)

Прочность определяется по тарировочной кривой "прочность-скорость распространения волн", "прочность акустическое сопротивление". Точность ±60%.

Модули упругости определяются аналитически по значениям скоростей распространения волн. Наличие дефектов и габариты устанавливаются по изменению скорости распространения волн.

Кишиневский завод "Электроточприбор"

Радиометрические методы

8

Сцинтиляционные гамма-плотномеры СГП и РП

Плотность материала; обнаружение дефектов

При сквозном просвечивании аналитически по значениям регистрируемых гамма-лучей, прошедших через конструкцию, и функциональной зависимости плотности от измеряемых величин. Точность±75%.

При одностороннем испытании по тарировочной кривой зависимости плотности материала и числа рассеянных гамма - лучей в единицу времени. Точность±60%. Дефекты обнаруживаются путем фотографирования в двух или трех плоскостях конструкции с обработкой и расшифровкой гамма-снимков.

В части РП экспериментальная база ЛенЗНИИ-ЭПа

9

Радиометрические влагомеры НВ-3

Влажность неорганических материалов (не имеющих в химическом составе водорода)

По цифровой устанавливается влажность материала

Магнитный метод

10

Магнитометрические приборы ИМП (измеритель магнитной проницаемости), ИПА (измеритель параметров аппаратуры), ИНТ-М2 (измеритель напряжений и трещин)

Размещение арматуры в каменных и железобетонных конструкциях, толщины защитного слоя, напряженное состояние арматуры

По отклонению стрелки амперметра со специальной градуировкой при перемещении по поверхности конструкций фиксируется расположение арматуры (ИМП). Измерение толщины защитного слоя основано на изменении магнитного сопротивления датчика при нахождении его вблизи арматурного стержня (ИПА). (Точность до 1 мм). Измерение напряжений в металле основано на зависимости магнитной проницаемости от величины максимальных напряжений (ИНТ-М2). Точность ±2%.

Теплофизический метод

11

Термощупы ТМ(А), ЦЛЭМ

Температура на поверхности конструкции

По отклонению стрелки тепломера при прижиме щупа к поверхности конструкции при температуре от -5 до +90С.

Ленинградский ин-т холодильной промышленности

12

Психрометр ассмана

Влажность воздуха у поверхности конструкции

Аспарационный подъем жидкости в сухом термометре

13

Электронный влагомер ЭВД-2

Влажность древесины

По среднему значению замеров при прижиме чувствительного элемента прибора к поверхности конструкции определяется влажность материала

Акустический метод

14

Комплект для контроля звукоизолирующей способности ограждающих конструкций в составе: генератор шума

ГШИ-1, усилитель мощности УМ-50, громкоговоритель, шумомер Ш-60-И, анализатор шума АМ-2 МЛИОТ

Проверка звукоизолирующей способности конструкции

Уровни звукового давления в помещениях, разделяемых испытываемой конструкцией, измеряются анализатором шума. Звукоизолирующая способность определяется по перепаду уровней.

Геодезический метод

15

Прогибомеры Максимова, Аистова, ЛИСИ, Муссуры

Местные деформации конструкций сдвиги и повороты в узлах конструкций

Деформации определяются в результате перемещения подвижного стержня прибора относительно неподвижного при плотном их прижиме к поверхности конструкции

16

Проволочные тензометры сопротивления

Местные деформации

Деформации определяются по изменению сопротивления проводников, наклеенных на поверхность конструкций, при их сжатии или растяжении

17

Нивелиры НА-1, с оптической насадкой

Измерение абсолютных осадок зданий и сооружений

Нивелирование с постоянной точки при перемещении геодезической рейки. Средняя квадратичная ошибка ±1 мм (±0,3 мм для нивелиров с оптической насадкой)

18

Теодолиты Т-2-010

Измерение абсолютных сдвигов в плане

Створный метод засечки микротрангуляции (замеры при постоянной точке отсчета с перемещением рейки). Точность ±1-4мм

19

Нивелир НА-1, Теодолит 1-2, Клинометры

КП-2

Измерение кранов сооружения

Способность измерения горизонтальных углов. Точность ±5-10.

Метод замеров освещенности

20

Люксметры

Ю-16, Ю-17, ЛИ-3

Уровень освещенности в различных местах помещения

Освещенность определяется по стрелочному индикатору прибора.

Метод контроля герметичности стыков

21

Измеритель воздухопроницаемости ИВС-М, адгезиометр ЛНИИАКХ

Коэффициент воздухопроницаемости стыков, адгезия герметика к бетону

По скорости воздушного потока через стык определяется коэффициент воздухопроницаемости и адгезия герметика