Эти матрицы с точки зрения затраты металла, расхода бетона или стоимости позволяют выбрать окончательные параметры для рассматриваемого объекта (размеры сечений и армирование).

Выбрав размеры объекта по таким показателям и учитывая требования СНиП 2.03.01-84, необходимо произвести проверку параметров объектов по предельным состояниям первой группы.

Конструкции и сооружения, для которых особенно полезен такой подход, включают:

все большепролетные сборные железобетонные конструкции;

протяженные сооружения покрытий дорог, аэродромов, производственных площадей, полов зданий;

трубы гидротехнических и мелиоративных сооружений;

сооружения промышленного, гражданского и транспортного назначения;

резервуары для воды и светлых нефтепродуктов;

вертикальные стволы шахт;

различные стержневые статически неопределимые системы и т.д.

Таким образом, рекомендации изложенного прямого метода расчета оптимальных параметров рассчитываемого объекта позволяют проектировщику заложить оптимальные параметры объекта при расчете самонапряженных и предварительно напряженных конструкций и сооружений в соответствии со СНиП 2.03.01-84.

Самонапряженные конструкции являются разновидностью предварительно напряженных железобетонных конструкций. Особенностью самонапряженных конструкций является напряжение всей расположенной в бетоне арматуры независимо от ее направления. Величина напряжений в арматуре и бетоне, возникающих в процессе расширения бетона совместно с заанкеренной в нем арматурой, зависит от технологических и конструктивных факторов (количества арматуры, расположения ее в сечении ?? симметричного, несимметричного, в двух или трех направлениях, дополнительных силовых или упругих связей примыкания к ñìåæíûì конструкциям, трения по основанию и т. п.).

Конструктивная форма, вид армирования и характер нагружения современных конструкций и сооружений настолько усложнились, что, применяя самонапряженный железобетон, а в некоторых случаях ?? одновременно и механическое преднапряжение арматуры, приходится прибегать в расчетах подобных конструкций к постепенному приближению оптимальных высоты, ширины и класса бетона, выполнению многократных пересчетов, что чрезвычайно громоздко и трудоемко.

В связи с этим особое значение приобретают практические методы проектирования и расчета, позволяющие находить оптимальные сечения бетона и арматуры, в том числе при воздействии эксплуатационных, монтажных или других нагрузок, вызывающих в конструкциях внутренние усилия и напряжения другого знака.

Рекомендуемый прямой метод расчета позволяет подбирать сечения предварительно напряженных и самонапряженных конструкций одновременно с учетом этих двух различных воздействий.

Противоположные по знаку усилия могут возникать в различных участках конструкции и при одном воздействии (например, в стенке напорной трубы, в шелыге и боковых участках), в покрытиях дорог и аэродромов, неразрезных заводских площадях и полах (под сосредоточенной нагрузкой и на некотором расстоянии) и в других случаях, но армировать такие конструкции нужно постоянно по всей длине с обеих сторон.

Применяется метод разделения переменных характеристик на две группы: 1-я ?? изменяющиеся, т.е. требующие определения расчетом, и 2-я ?? принятые в расчете неизменными и назначаемые по правилам разд. 2 настоящего приложения в виде относительных величин. В качестве изменяющихся характеристик обычно рассматриваются b, h, Rbt.ser, Аs и А??s.

При расчете самонапряженных конструкций прямым методом необходимо руководствоваться следующими положениями:

1. Подбор сечения производится на расчетные внутренние усилия в конструкции М и N и противоположного знака М1 и N1 усилие может иметь тот же знак).

2. В основу расчета положено основное напряженном состояние конструкции при действии условных внешних сил Мо, Nо и М??о, N??o, создающих в сечении треугольную эпюру напряжений (черт. 1). В этом случае усилия в арматуре известны:

Nо = As ??sp; N??o = As ????sp, (1)

где обычно при использовании стали одной марки для арматуры As и A??s ??sp = ????sp.

Черт. 1. Îñíîâíîå напряженное состояние конструкции при действии условных внутренних сил Мо, Nо и М??о, N??o

3. Любое сложное поперечное сечение элемента рассматривается в обобщенном виде (черт. 2), при этом его прямоугольная часть bh является основой конструкции, принятой за единицу; ??f (I ????f), ??sp, ????sp ?? отношение расстояний от точек приложения усилий, действующих соответственно в уширениях, свесах и арматуре, до низа самонапряженной конструкции к высоте сечения. Эти характеристики показаны на черт. 3 для общего случая предварительного напряжения, когда в сечении имеется и ненапряженная арматура. Для самонапряженных конструкций ??s, ??'s, ??s и ????s равны нулю.

4. Для характеристики сопротивления бетонного сечения действию растяжения и изгиба вводятся мультипликаторы ?? и ?? рассчитываемой конструкции:

?? = bhRbt,ser; ?? = h?? = bh2Rbt,ser, (2)

с помощью которых усилия в арматуре Nsp и N??sp выражаются в относительных величинах ??sp и ??'sp, которые определяются по формулам

и (3)

Черт. 2. Различные формы поперечного сечения изгибаемых предварительно напряженных конструкций, применяемых в промышленном и гражданском строительстве

1-10 ?? варианты формы сечения; „св." и „уш." ?? сокращенное обозначение свесов и уширений

Черт. 3. Относительные характеристики и напряженное состояние течения конструкции в стадии трещинообразования при действии усилий Мcrc и Ncrc от эксплуатационной нагрузки и М'crc и N??crc ?? от эксплуатационной нагрузки другого знака или от монтажной нагрузки

Аналогично выражаются относительные характеристики ??sр и ????f усилий, действующих в момент трещинообразования соответственно в свесах, уширениях, а также относительные характеристики ??N и ??b ?? внешней продольной силы Ncrc и суммы всех усилий растяжения Nsp + N??sp + Nf.

Рассмотрение конструкции в обобщенном виде позволит прямым расчетом получить величины ??sр и ????sр для нижней и верхней предварительно напряженной арматуры без назначения размеров сечения и прочности материалов конструкции, как это обычно принято делать.

5. Уравнения равновесия сил (знак „плюс" ?? растяжение) составляются в относительных единицах:

(4)

(5)

где

(6)

(7)

где F, F1 ?? удельные сопротивления бетонных сечений в обобщенном виде с учетом свесов;

В, В1 — относительные расстояния от места приложения равнодействующей всех сил сжатия от низа конструкции.

Величины F, F1 и В, В1 принимаются по табл. 1 прямого метода расчета.

6. Полученные (после подстановки величин известных нагрузок и относительных характеристик сечения) уравнения равновесия решаются в указанной ниже последовательности относительно высоты сечения h с использованием формул (2) настоящего приложения совместно с условием равномерного обжатия сечения

(8)

Из уравнений (4) и (5) настоящего приложения:

где x, у, z ?? численные значения, полученные подстановкой заданных величин.

Подставив в уравнение (8) значения ??sр и ????sp, получим общее уравнение

(9)

Таблица I

Коэффициенты F и В прямого метода расчета

??

Коэффициенты при ????f, равном В

-0,1

0

0,1

0,2

0,3

0,4

0,6

1

2

4

8

0

0,221

0,584

0,292

0,676

0,340

0,732

0,372

0,773

0,395

0,803

0,413

0,827

0,436

0,862

0,462

0,903

??

??

0,500

1,000

0,05

0,229

0,592

0,292

0,676

0,334

0,727

0,362

0,764

0,382

0,729

0,397

0,814

0,419

0,846

0,441

0,884

0,461

0,926

??

0,475

0,975

0,10

0,236

0,600

0,292

0,676

0,328

0,727

0,352

0,756

0,369

0,780

0,383

0,801

0,402

0,829

0,421

0,866

0,439

0,904

??

0,450

0,950

0,15

0,240

0,607

0,292

0,676

0,323

0,716

0,343

0,747

0,358

0,769

0,369

0,788

0,386

0,814

0,403

0,847

0,418

0,883

0,425

0,907

0,427

0,925

0,20

0,242

0,615

0,292

0,676

0,317

0,711

0,335

0,739

0,347

0,759

0,357

0,776

0,370

0,799

0,385

0,829

0,398

0,861

0,404

0,884

0,406

0,912

0,30

0,245

0,628

0,292

0,676

0,308

0,702

0,320

0,723

0,328

0,740

0,334

0,751

0,343

0,769

0,352

0,791

0,360

0,819

0,364

0,837

0,366

0,850

0,40

0,245

0,640

0,292

0,676

0,300

0,695

0,308

0,709

0,312

0,723

0,316

0,729

0,320

0,741

0,324

0,759

0,327

0,777

0,328

0,792

0,330

0,800

Примечания: 1. Коэффициенты F1 и В1 определяются по данной таблице с заменой на ????f на ??f.

2. ?? для сжатой зоны, имеющей свесы, полки и т.п.; ?? для сжатой зоны прямоугольного сечения.

Подставив значения ?? и ?? в уравнение (9)получим

Решая уравнение как квадратное относительно h, находим оптимальную высоту изгибаемого сечения, отвечающую оптимальному размещению и величине армирования обеих зон конструкции и заданным нагрузкам.

7. По известным относительным усилиям в арматуре с помощью формулы (3) настоящего приложения определяется армирование обеих зон конструкции:

где Rs,ser — расчетное сопротивление арматуры растяжению для предельных состояний второй группы;

??s8 ?? потери напряжений в арматуре;

??sp ?? коэффициент точности натяжения, принимаемый равным 0,9.

Сечение арматуры по формулам (10) и (11) настоящего приложения получается с некоторым запасом, который можно компенсировать, введя коэффициент 0,97. Из выражений (10) и (11) видно, что учет потерь самонапряжения ??s8 требуется только при назначении сечения арматуры конструкции. Например, при расчете напорных труб резервуаров и различных подземных сооружений потери ??s8 в формулах (10) и (11) обычно принимаются равными нулю, поскольку самонапряжение в период эксплуатации сооружения в контакте с водой полностью восстанавливается.

8. При проектировании самонапряженных конструкций необходимо учитывать, что напрягающий бетон обладает высокими сопротивлениями растяжению при изгибе Rbtb и осевому растяжению rbt,ser. Так, например, фактическое сопротивление напрягающего бетона растяжению при изгибе для бетона классов В30 — В70 находится в пределах 6 — 10 МПа. На это указывают многочисленные контрольные испытания растворов и бетонов на НЦ, которые дают в 1,5 ?? 2 раза более высокое отношение rbt,ser/Rbn по сравнению с нормированной величиной этого отношения для бетонов на портландцементе.

9. Большинство конструкций, для которых может быть применен напрягающий цемент, имеет прямоугольную форму поперечного сечения (стенки трубы и резервуара, полы и покрытия промышленных складов, стенка трубопровода большого диаметра, объемные блоки квартир в жилищном строительстве и т.д.), т.е.

??f = 0; ????f = 0; ????f = 0.

В этих случаях расчетные формулы (4) ?? (7) настоящего приложения будут иметь вид:

(4??)

(5??)

где (6??)

(7??)

10. Проверка напряжений крайних наиболее сжатых волокон бетонного сечения при расчетной нагрузке трещинообразования производится по формулам:

(12)

(13)

где ??b и ????b определяются по формулам:

??b = ??sp + ????sp + ??f,(14)

????b = ??sp + ????sp + ????f. (14??)

11. Принятое сечение балки проверяется расчетом по предельным состояниям первой группы (черт. 4) по формуле

(15)

где (16)

или по приближенной зависимости для сечений со свесами

М ± NaN = Nsp (h asp) + N'sp (h a'sp) N'. (16??)

Выбранная конструкция должна удовлетворять условию

(17)

где

Черт. 4. Напряженное состояние обобщенного сечения изгибаемой конструкции при расчете по прочности

12. Расчет главных растягивающих и сжимающих напряжений производится при нормативной нагрузке по формулам:

F=(1 + ??'f + ??f)bh, (18)

(19)

(20)

где ??о ?? относительная координата центра тяжести:

Напряжения ??bc и ??x определяются по формулам:

(21)

(22)

Главные напряжения ??m при предварительном напряжении в продольном и поперечном направлениях определяются по формуле

(23)

Формула (23) позволяет выбрать оптимальную степень самонапряжения ??bp ??bx по заданным ??bx в продольном направлении.

2. ВЫБОР ОТНОСИТЕЛЬНЫХ ХАРАКТЕРИСТИК СЕЧЕНИЯ

При подборе сечения изгибаемых элементов конструкций и определении необходимого армирования по заданным нагрузкам предварительно необходимо решить конструктивные вопросы и назначить относительные величины будущего сечения конструкции и его конфигурацию, а именно: