измеряют величину сопротивления между проводом верхнего термометра и концами А и Б. Меньшей величине сопротивления соответствует провод Б, большей - А;

восстанавливают начальную схему, конструкцию плети и длину линии связи, маркировку плети и гидроизоляцию стыков, после чего шурф засыпают.

Поврежденный оголовок и верхняя часть термометрической трубы при необходимости заменяют, сварной стык гидроизолируют, а полость трубы очищают от наплывов сварки и грязи.

Сведения обо всех повреждениях плети и линии связи и изменениях при их восстановлении записывают в паспортах и учитывают при обработке результатов измерений.

Приложение 4

Рекомендуемое

Организация наблюдений за режимом источников водоснабжения и мерзлых грунтов по трассам водопроводных и канализационных трубопроводов

Наблюдениями, особенно в критический водный период1, устанавливают степень надежности источника водоснабжения и в значительной мере определяют методику и содержание исследований в процессе изысканий для разработки проекта и рабочей документации.

1 Критическим водным периодом принято считать период (обычно с января по апрель включительно), в течение которого дебит источников постепенно уменьшается и становится близким к минимальному.

Наблюдения необходимо продолжать и после оборудования и пуска в эксплуатацию устройств водоснабжения. Данные, получаемые при наблюдениях, используют для выявления причин и устранения дефектов, которые могут возникнуть в процессе эксплуатации, а также при необходимости в качестве основания для устранения дефицита в водопотреблении путем организации водоснабжения из расчета превышения приходной части водного баланса над расходной и решения вопроса о последующем увеличении производительности устройств водоснабжения.

При отсутствии возможности организации непрерывных наблюдений от момента выбора источника до начала установки оборудования в месте водозабора в исключительных случаях допускается проводить наблюдения только в критический водный период.

В каждом случае в зависимости от местных условий содержание и объем наблюдений определяют специально составляемыми инструкциями и программами. При этом в основу кладут следующие положения.

Подземные воды

1. Дебит подземных вод находится в зависимости от количества атмосферных осадков и площади питания, температурного режима воздуха, величин инфильтрации испарения, мерзлотно-грунтовых условий на участке (фильтрационных свойств пород и др.), а также емкости водоносного слоя.

Подмерзлотные воды, циркулирующие в водоносных слоях большой емкости, обладают сравнительно постоянным режимом, несмотря на разнообразие условий их накопления; а режим, качество и температура воды в водоносном слое небольшой емкости находятся в непосредственной зависимости от изменения условий ее накопления.

2. На источниках водоснабжения устанавливают наблюдения за метеорологическими условиями (количество и режим атмосферных осадков), уровнем подземных вод, перемещением выхода источника (головки ключа), дебитом подземных вод, мерзлотными условиями (промерзанием и оттаиванием деятельного слоя, залеганием поверхности вечномерзлого грунта, наледными явлениями и т.п.), гидрогеохимическими и санитарными условиями и их соответствием требованиям государственных стандартов.

При выполнении опытных работ (откачки, нагнетания и т.п.) при необходимости изучают характер депрессионных кривых.

В случае наличия метеорологических или мерзлотно-метеорологических станций в радиусе до 50 км от источника водоснабжения целесообразно использовать данные этих станций.

3. Наблюдения за режимом подземных вод необходимо проводить в местах предполагаемого размещения водозабора, а также в местах с наименьшей и наибольшей отметками уровня подземных вод. Вместе с тем необходимо проводить наблюдение за источниками, выходящими на поверхность земли, уровнем воды в ближайших колодцах, поверхностных водоемах и водотоках.

4. При организации наблюдений за уровнем межмерзлотных и подмерзлотных вод необходимо учитывать, что вода в наблюдательных скважинах может замерзать в пределах толщи вечномерзлых грунтов и предусматривать средства для оттаивания льда (продувку паром, опускание сильнонагретых штанг, электропрогрев и др.).

Наблюдение за восстановлением уровня воды в эксплуатируемых скважинах проводят при продолжительных остановках насосных агрегатов. Одновременно с наблюдением за уровенным режимом, дебитом и качеством подземных вод замеряют температуру воды в 2 - 3 точках, в том числе на выходе источника.

5. Наблюдение за перемещением выходов источников следует проводить без каптирования. Места выходов источников наносят на план (карту) местности.

6. Вблизи от пунктов наблюдений за уровнем подземных вод следует устанавливать реперы в соответствии с рекомендуемым приложением 1. При организации наблюдений необходимо учесть возможность образования наледи непосредственно около источника.

7. Методику наблюдений за дебитом подземных вод устанавливают в зависимости от мерзлотных и гидрогеологических условий и стадии изысканий. Для обоснования решений на стадии разработки проекта проводят замер дебита источника водоснабжения в критический водный период, для чего оборудуют временное каптажное сооружение.

В случае нецелесообразности каптажа источников колодец или буровую скважину заглубляют в водоносный массив, из которого происходит питание источников. При изучении источников подмерзлотных вод колодцы и буровые скважины изолируют от надмерзлотных вод.

8. Наблюдения за промерзанием и оттаиванием деятельного слоя, а также динамикой поверхности вечномерзлого грунта проводят непосредственно в местах выхода источника.

Поверхностные водотоки и водоемы

9. На поверхностных водотоках и водоемах, принятых в качестве источников водоснабжения, устанавливают наблюдения за метеорологическими условиями, уровнем и расходами воды, мерзлотным режимом (нарастанием и таянием ледяного покрова, условиями и местом образования донного льда, наледными явлениями и т.п.), качеством воды.

10. Для выяснения наличия и величины притока грунтовых вод в малые водоемы и водотоки, в том числе в пределах плесов, замкнутых при зимнем промерзании, проводят откачку воды и наблюдения за восстановлением в них уровня воды в критический водный период.

Мерзлотные площадки на трассах трубопроводов

11. Закладку мерзлотных наблюдательных площадок проводят после установления направления трассы трубопроводов.

Мерзлотные наблюдательные площадки закладывают в местах с типичным для трассы трубопровода комплексами мерзлотно-грунтовых условий.

На выбранных площадках искусственно создают условия, типичные для трассы трубопровода в условиях эксплуатации (площадку осушают, снимают моховой покров и удаляют снег и т.п.), укладывают дополнительное покрытие, вырубают деревья и кустарник.

12. На мерзлотных площадках проводят наблюдения за температурой приземного воздуха, температурой вечномерзлого грунта и режимом промерзания и оттаивания деятельного слоя в соответствии с рекомендуемыми приложениями 2 и 3.

Наблюдения необходимо проводить непрерывно в течение двух и более лет.

Приложение 5

Рекомендуемое

Методика расчета минимальной высоты насыпи по условию допустимых упругих осадок основания

Высоту насыпи, при которой величина упругой осадки λ ее основания (по оси пути) не будет превышать допустимого значения [λ ], определяют, исходя из соотношения

                                                              (1)

где                               (2)

                                                               (3)

Но - расстояние по оси пути от подошвы шпалы до основания насыпи с учетом ее осадки; lш - длина шпалы; h - мощность уплотненного слоя торфа под насыпью по оси пути; b - полуширина рельсовой колеи; q - величина наибольшего вертикального напряжения в земляном полотне от расчетной нагрузки (вагонной или локомотивной) на глубине Но; G - модуль сдвига торфяного грунта.

Рис. 1. Кривые изменения значений функции Кq для вагонов:

а - четырехосных; б - шестиосных; в - восьмиосных

Графики зависимости Кq от Н0 и h для нагрузки от четырех, шести- и восьмиосных вагонов с осевой нагрузкой для всех вагонов 21 т, приведены на рис. 1.

При расчетах можно использовать корреляционную зависимость между модулем сдвига торфа G и его плотностью γск имеющую вид

G = 1,39 (10 γск)3,                                                         (4)

где размерность γск, г/см3, G, кг/см2.

Плотность торфа под насыпью γск определяют по формуле

                                                              (5)

где  - плотность скелета торфа естественного сложения; hе - мощность слоя неуплотненного торфа; S - осадка насыпи, возникающая вследствие сжатия торфа в ее основании.

Расчет высоты насыпи Нmin выполняют в такой последовательности.

1. При некоторой начальной высоте насыпи Н’ определяют осадку торфяного основания S1 и вычисляют величину Н’0 с учетом толщины балластной призмы hбп,

Н’о = бhбп + Н’ + S1.                                               (6)

2. По формулам (4) и (5) определяют модуль сдвига торфа G в основании насыпи.

3. По заданному значению допустимой упругой осадки [λ] и значению G определяют величину Кq = [λ]G.

4. По вычисленному значению Кq по графикам рис. 1, в зависимости от типа расчетной вагонной нагрузки и мощности слоя уплотненного торфа he = hе - S1, определяют толщину насыпи Н’0 и вычисляют соответствующую высоту насыпи по формуле

Если оказывается, что полученное значение Н’’1 меньше (больше), чем требуемое Н’’, задаются новым значением высоты насыпи Н’’, таким, чтобы H’’2 было больше (меньше) чем Н’’, и расчет повторяют в той же последовательности до тех пор, пока не будет получено равенство Нп = Н.

Высоту насыпи Нmin, при которой будет обеспечено равенство λ = [λ], определяют линейной интерполяцией или экстраполяцией (рис. 4).

Пример расчета

Дано. Мощность торфа hе = 3,60 м, плотность торфа в естественном сложении γск = 0,12 г/см3, толщина балластной призмы под шпалой - 0,30 м.

Расчетная нагрузка - восьмиосные цистерны с осевой нагрузкой 21 т, допускаемая упругая осадка [λ] = 2,5 мм.

Решение. Задаемся начальной высотой насыпи Н’ = 1,5 м. Рассчитываем остаточную осадку основания насыпи согласно пп. 3.27 - 3.30 основного текста настоящих Норм. При S1 = 1,2 м и заданных величинах hбп и H’ определяем Н’’o = 0,3 + 1,5 + 1,2 = 3,0 м.

По формуле (5) определяем

По формуле (4) определяем

G = 1,39 ∙ 1,83 = 8,1 кг/см2.

По допускаемой величине упругой осадки, равной по заданию 2,5 мм вычисляем

Кq = 2,5 ∙ 8,1 = 20,2 мм∙кг/см2.

По графику рис. 1, в, при h = hе - S = 2,4 м и Кq = 20,2, находим, что требуемая величина Н’01 = 6,9 м или высота насыпи (при S = 1,2 м) Н’1 = 6,9 - 0,3 - 1,2 = 5,4 м значительно превышают принятую величину. Следовательно, условие (1) заведомо не выполняется.

Принимаем высоту насыпи Н’’ = 3,0 м, расчетную величину конечной осадки основания δ2 = 1,60.

Тогда Н’’o = 0,3 + 3,0 + 1,6 = 4,9 м;

G = 1,39 ∙ 2,163 = 14 кг/см2;

Кq = 2,5 ∙ 14 = 35 мм∙кг/см2.

При h = 2,0 м и Кq = 35 по графику рис. 1, в, находим толщину насыпи Н’’о2 = 3,7 м и при S = 1,6 м определяем H’’2 = 3,7 - 0,3 - 1,6 = 1,8 м.

В координатных осях «Заданная высота насыпи (ось ординат) - требуемая высота насыпи (ось абсцисс)» (рис. 2) через точки, построенные по результатам выполненных расчетов, проводим прямую линию 1 до пересечения с линией 2, проведенной из начала координат под углом 45°. Ордината точки пересечения линий 1 и 2 дает искомую высоту насыпи Нmin, при которой приближенно выполняется условие λ=[λ]. Из рис. 2 следует, что расчетная высота насыпи в рассматриваемых условиях Н составляет 2,6 м.

При необходимости выполнения расчета на воздействие вагонной нагрузки с осевым давлением Р, не равным 21 т, значения Кq, полученные с использованием графиков рис. 1, должны быть умножены на величину, равную отношению Р:21.

Рис. 2. Схема определения высоты насыпи по условию допустимой упругой осадки

Приложение 6

Рекомендуемое

Методика прогноза температурного режима грунтов

1. Общие положения

1.1. Прогноз температурного режима грунтов выполняют с учетом того, что на территории, окружающей сооружение, температурный режим грунтов формируется под влиянием:

изменений условий теплообмена на поверхности строительной площадки по сравнению с условиями в пределах окружающей ненарушенной территории;

температурного режима грунта на окружающей территории;

теплового воздействия сооружения на грунты основания.

1.2. Основными параметрами температурного режима грунтов являются глубины их сезонного и многолетнего промерзания-оттаивания и температура на глубине нулевых годовых амплитуд.

1.3. Прогнозирование температурного режима грунтов на территории строительства включает:

прогноз изменения температуры на глубине нулевых годовых амплитуд, а также глубин сезонного и многолетнего оттаивания и промерзания грунта в связи с изменением высоты и плотности снежного покрова, рельефа, растительности, состава и влажности грунта и других факторов, условий теплообмена.

прогноз температурного режима грунтов в зоне теплового влияния различных сооружений;

теплофизическая оценка различных инженерных мероприятий по регулированию температурного режима грунтов при строительстве и эксплуатации транспортных сооружений (укладка теплоизоляции, искусственное охлаждение грунтов и т.п.).

2. Исходные данные и методы их определения

2.1. Объем и содержание исходных данных, необходимых для прогноза изменений температурного режима грунта при строительстве и эксплуатации сооружений принимают в зависимости от целей прогнозирования.

2.2. Величины среднегодовой температуры, мощности слоя сезонного промерзания-оттаивания грунтов по трассе дороги определяют в процессе изысканий.