Черт. 16. Конструктивные параметры тонкослойных элементов в блоке

lo - длина тонкослойного элемента; bo - ширина тонкослойного элемента; Ho - высота тонкослойного элемента; Н - высота тонкослойного сотоблока; L - длина тонкослойного сотоблока; В - ширина тонкослойного сотоблока

4.10. Размеры в плане отдельных блоков для удобства их монтажа и эксплуатации следует принимать 1??1—1,5??1,5 м с учетом фактических размеров сооружения. Высоту поперечного сечения тонкослойного ячеистого элемента рекомендуется принимать равной 0,03-0,05 м. Ячейки могут быть приняты любой формы, исключающей накопление в них осадка. Угол наклона элементов необходимо принимать 50-60о (меньшие значения - для более мутных вод, большие - для маломутных цветных). Длину тонкослойных элементов следует определять специальным расчетом и принимать 0,9-1,5 м (см. п. 4.14).

4.11. Установку отдельных блоков в отстойниках и осветлителях следует осуществлять с помощью специальных несущих конструкций, расположенных под или над ними, либо их креплением к элементам сборной системы (желобам, лоткам, трубам) и промежуточным стенкам сооружений. При этом могут быть использованы стальные или полимерные трубы, дерево, арматурная проволока, профилированные конструкции и т.д.

4.12. Необходимо обеспечивать герметичность зазоров между отдельными блоками и внутренними стенками сооружений, например, с помощью резиновых прокладок.

4.13. Сбор осветленной воды из тонкослойных сооружений следует осуществлять по желобам с затопленными отверстиями или открытыми водосливами, например, треугольного профиля, расположенными на расстоянии не более 2 м один от другого.

РАСЧЕТ ТОНКОСЛОЙНЫХ ОТСТОЙНИКОВ И ОСВЕТЛИТЕЛЕЙ

4.14. Расчет технологических и конструктивных параметров сооружений, а также отдельных тонкослойных элементов следует производить по зависимости

.(5)

Для удобства расчета формула (5) приведена к виду

(6)

или ,(7)

где К1 = ;(8)

К2 = ,(9)

?? - коэффициент, учитывающий влияние гидродинамических условий потока в тонкослойных элементах (см. п. 4.16);

Кф - коэффициент, учитывающий форму поперечного сечения тонкослойных элементов (см. п. 4.19);

Но - высота тонкослойного элемента, м;

??о - средняя скорость потока в тонкослойных элементах, м/ч;

uо - расчетная скорость осаждения взвеси, м/ч;

?? - угол наклона тонкослойных элементов к горизонту, град;

?? - коэффициент, учитывающий стесненное осаждение взвеси под тонкослойными элементами;

Кar - коэффициент агломерации, учитывающий влияние осадка, выделяющегося из тонкослойных элементов, на интенсификацию хлопьеобразования (см. п. 4.17);

Êст - коэффициент, учитывающий стеснение сечения потока в тонкослойном элементе сползающим осадком (см. п. 4.17);

Vн - удельная нагрузка или производительность сооружения в расчете на площадь зеркала воды, м3/(м2??ч) или м/ч;

К1, К2 - обобщенные расчетные коэффициенты [см. формулы (8) и (9)];

lo - длина тонкослойного элемента, м;

Ко.и - коэффициент, учитывающий гидравлическое совершенство тонкослойного сооружения и степень его объемного использования - отношение фактического к расчетному времени пребывания воды (см. п. 4.20);

Кк - конструктивный коэффициент, равный отношению фактической открытой для движения воды площади тонкослойных элементов к общей площади зеркала воды отстойного сооружения (см. п. 4.21) .

4.15. Расчетная скорость осаждения взвеси должна приниматься в соответствии с опытом эксплуатации сооружений, работающих в аналогичных условиях. При отсутствии такого опыта следует производить технологическое моделирование процессов хлопьеобразования и тонкослойного осаждения с целью определения требуемого значения uо. При невозможности указанного значение uо определяют по данным СНиП 2.04.02-84.

4.16. Коэффициент ?? следует определять по данным табл. 7, в которой bo - ширина тонкослойного элемента, Но - высота тонкослойного элемента.

Таблица 7

Характеристика

Значение bo / Но

тонкослойного элемента

1,0-2,5

2,5-5,0

5,0-10

?? 10

Значение ??

1,25

1,15

1,05

1,0

4.17. Значение Кст рекомендуется принимать в среднем 0,7—0,8 (б??льшие значения — для более мутных вод, меньшие - для маломутных цветных вод).

4.18. Значение произведения ?? Каr следует принимать равным 1,15-1,3 (б??льшие значения - для тонкослойного осветлителя, меньшие - для тонкослойного вертикального отстойника).

4.19. Значение коэффициента формы Кф зависит от фактической формы и конфигурации тонкослойных элементов (ячеек) в поперечном сечении: для сечения прямоугольной формы - 1,0; круглой - 0,785; треугольной - 0,5; шестиугольной - 0,65-0,75; при использовании труб и межтрубного пространства - 0,5.

4.20. Величину Ко.и для предварительных расчетов рекомендуется принимать равной 0,6-0,75.

4.21. Значение коэффициента Кк следует определять по фактическим данным с учетом толщины материала для тонкослойных элементов. Предварительно рекомендуется принимать его равным 0,70-0,95 (б??льшие значения - для тонких пленочных материалов) .

4.22. Удельные нагрузки на тонкослойные сооружения, отнесенные к площади, занятой тонкослойными элементами, и с учетом показателей качества воды могут быть приняты по СНиП 2.04.02-84.

4.23. Полученные по расчету размеры тонкослойных элементов и тонкослойных сооружений в целом, а также значения удельных нагрузок надлежит проверить и скорректировать с учетом обеспечения минимального времени между выпусками осадка 6—8 ч. При этом высоту защитной зоны для вертикального отстойника следует принять равной 1,5 м, для горизонтального — 1 м.

4.24. Высоту зоны сбора осветленной воды рекомендуется принимать не менее 0,4—0,5 м.

4.25. В тонкослойных осветлителях для предотвращения образования зон повышенной концентрации взвеси нижнюю кромку тонкослойных блоков необходимо располагать непосредственно над верхней отметкой осадкоприемных окон.

Примеры расчета тонкослойных элементов сооружений

Пример 1. Расчет вертикального тонкослойного отстойника.

Качество исходной воды: цветность - 100 град; содержание взвеси - 50 мг/л; доза коагулянта - 60 мг/л по безводному продукту; расчетная скорость осаждения взвеси — 0,3 мм/с ?? 1,08 м/ч.

Тонкослойные элементы прямоугольного сечения имеют размеры в плане 0,05??0,05 м (высота ?? ширина) и угол наклона 60° при значениях Кк = 0,75 Ко.и = 0,7.

По расчету объема зоны накопления осадка и периода межпродувочного цикла значение нагрузки на сооружения по условиям накопления взвеси принято не более 4 м/ч.

Длина тонкослойных элементов определяется по формулам (7)-(9):

;

;

м.

Принимаем длину тонкослойных элементов равной 0,8 м при нагрузке 4 м/ч.

Пример 2. Расчет тонкослойного осветлителя.

Качество исходной воды: цветность - 20 град; содержание взвеси -500 мг/л; доза коагулянта - 50 мг/л; расчетная скорость осаждения взвеси - 0,40 мм/с ?? 1,44 м/ч.

Тонкослойные элементы такие же, как в примере 1 (за исключением угла наклона, равного 55°).

Значения конструктивного коэффициента и коэффициента объемного использования принимаются соответственно Кк = 0,7 и Ко.и = 0,6.

С учетом реконструкции существующих осветлителей и их фактических размеров установлено, что нагрузка на сооружения не может быть более 6 м/ч, а высота тонкослойных элементов — 1,2 м.

Используем формулы (6)-(9):

м/ч ;

м ;

;

Принимаем удельную нагрузку равной 6 м/ч и длину тонкослойных элементов 1,0 м.

5. НАПОРНАЯ ГИДРАВЛИЧЕСКАЯ СИСТЕМА СМЫВА ОСАДКА В ГОРИЗОНТАЛЬНЫХ ОТСТОЙНИКАХ

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

5.1. Система предназначена для удаления осадка из горизонтальных отстойников открытого и закрытого типов после отключения отстойников с помощью напорных струй воды без применения ручного труда.

5.2. Гидросмыв наиболее целесообразно применять при наличии малоподвижных осадков, образующихся в условиях очистки мутных вод и характеризующихся содержанием взвеси не более 1500 мг/л.

5.3. Высота слоя осадка в отстойнике должна быть не более 1-1,5 м.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИСТЕМЫ

5.4. Система (черт. 17) включает в себя устройства для подачи воды и отвода размытого осадка.

Подача воды производится с помощью насоса, коллекторов, разводящих труб и специальных насадок. Отвод воды с осадком осуществляется с помощью лотков, устроенных в днище отстойника, и далее по трубам в приемный резервуар сооружений по обработке промывных вод и осадков.

Черт. 17. Система гидравлического смыва осадка в горизонтальных отстойниках

1 - насос для подачи воды; 2 - подводящие трубы; 3 - коллектор; 4 - разводящие трубы; 5 - патрубки с насадками; 6 - лотки

5.5. Для смыва осадка надлежит использовать сырую воду или воду из верхней части отстойника, сбрасываемую перед его очисткой в специальный запасной резервуар.

5.6. Управление системой осуществляют с помощью задвижек, установленных на напорном и всасывающем трубопроводах насоса.

Перед пуском системы в работу закрывают задвижку на трубопроводе, подающем обрабатываемую воду в отстойник, открывают задвижку на канализационном трубопроводе и производят опорожнение отстойника примерно на 2/3 его высоты. Затем открывают задвижку на напорном трубопроводе, подающем воду в систему удаления осадка, и включают насос. При этом осадок, накопившийся в отстойнике, взмучивается, происходят его смыв и удаление одновременно с опорожнением отстойника.

Выключение системы производят через 3-5 мин после полного опорожнения отстойника. Ориентировочно время удаления осадка составляет 30-40 мин.

5.7. Коллектор напорной системы следует размещать при длине отстойника, м:

40—45 - в начале разводящих труб;

60 - в средней его части с симметричным (по отношению к коллектору) расположением разводящих труб;

90 - в средней части отстойника надлежит устраивать два коллектора, при этом отстойник делится на две симметричные секции и в каждый коллектор подается вода от насоса по отдельной трубе.

5.8. Разводящие трубы следует укладывать по дну отстойника. При ширине отстойника до 4,5 м необходимы две нитки труб, прокладываемых вдоль стен отстойника. Лоток для сбора осадка и промывной воды размещают в этом случае по оси отстойника.

При ширине отстойника, равной 6 м, устанавливают три ряда разводящих труб, один из которых размещают по оси отстойника (в этом случае в отстойнике устраивают два отводящих лотка посредине между разводящими трубами).

5.9. Разводящие стальные трубы следует выполнять с переменным (телескопическим) сечением, что увеличивает равномерность распределения воды и позволяет снизить расход металла. Переход с одного диаметра труб на другой надлежит предусматривать посредине длины участка. Для предотвращения заиления пространство под трубами заливают бетоном (марки не ниже 200) и устраивают откосы.

5.10. На каждой разводящей трубе (на трубах, лежащих у стен, — с одной стороны, на центральных — с обеих сторон) вваривают стальные патрубки диаметром 32 мм под углом 45° к оси отстойника по ходу движения осадка при смыве. Патрубки имеют резьбу, на которую наворачивают соединительные части (типа футорки). В соединительные части ввинчивают и закрепляют (с помощью контргаек) бронзовые насадки длиной 50—60 мм, наружным диаметром 16—18 мм и внутренним — 10 мм. Входные и выходные кромки насадки скругляют.

Расстояния между патрубками с насадками — 1м, а на последней четверти длины труб — 1,5 м.

5.11. Насадки на разводящих трубах, находящихся у противоположных стен отстойника и в центре, должны быть расположены в шахматном порядке, чтобы факелы соседних и противоположных струй сливались и частично пересекались. На трубах в конце отстойника наваривают стальные заглушки.

РАСЧЕТ СИСТЕМЫ СМЫВА ОСАДКА

5.12. Расчет системы смыва осадка производят, исходя из получения в расчетном сечении отстойника размывающей скорости струи ??с = 0,5—0,8 м/с (в зависимости от плотности и прочности осадка).

5.13. Скорость осевой компактной струи ??с, м/с, в пределах основного потока для затопленной симметричной струи определяют, исходя из соотношения

,(10)

где ?? - экспериментальная константа, равная 0,075;

l - расстояние от насадки до расчетного сечения (в данном случае - до приемной канализационной трубы или лотка), м;

ro - радиус отверстия насадки, м;

??o - начальная скорость струи на выходе из насадки, м/с.

Внутренний радиус насадки ro принимается равным 0,005 м; расстояния от насадки до расчетного сечения l, м, равны:

для отстойников шириной 4,5 м - 2,25

« « 6,0 м - 1,50

Тогда из формулы (10) начальная скорость на выходе из насадки будет: при l = 2,25 м ??o = 35,5 ??c м/с; при l = 1,50 м ??o = 23,7 ??c м/с.

5.14. Расход qн, м3/с, через насадку определяется по формуле

qн = ?? ??о ,(11)

где ?? - площадь сечения отверстия насадки, м2.

Для принятого диаметра насадки 10 мм получим ?? = 78,5 ?? 10-6 м2, тогда qн = 78,5 ?? 10-6 ??о, м3/с.

5.15. Напор hн, м, необходимый для получения начальной скорости, определяется по формуле

,(12)

где ?? - коэффициент расхода, принимаемый равным 0,59—0,64;

g - ускорение свободного падения, м/с2;

hr - рабочая высота столба воды в отстойнике при промывке, м.

5.16. Расчетные расходы воды для каждого участка разводящих труб определяют в зависимости от числа насадок на нем и расхода воды, проходящего через одну насадку.

5.17. Диаметр труб и скорость движения воды в них определяют по вычисленным значениям расходов. При этом скорость движения воды в трубах не должна превышать 1,5 м/с.

Проверку расчетных и конструктивно принятых параметров следует производить по формуле

,(13)

где Lкр - критическая длина дырчатой трубы, при которой потеря напора полностью компенсируется восстановлением скоростного напора, м;

?? - коэффициент сопротивления трению по длине, равный для стальных труб 0,03—0,02;