Толщиномер любого типа с погрешностью измерения: ±50 мкм - для покрытий толщиной до 1,0 мм; ±100 мкм - для покрытий толщиной более 1,0 мм.

Провода соединительные по ГОСТ 6323 или аналогичные.

Источник постоянного тока - система электрических батарей по ГОСТ 2583 или аналогичные с общим напряжением не менее 30 В.

Вольтметр высокоомный типа ЭВ-2234 по ГОСТ 8711.

Миллиамперметры по ГОСТ 8711.

Резистор (реостат) любого типа.

М.2 Образцы для испытаний

М.2.1 В качестве образцов для испытаний используют образцы, отрезанные от трубы, или непосредственно трубы, уложенные в грунт.

М.2.2 Количество параллельных образцов для заданных условий испытаний - не менее трех.

Толщина и диэлектрическая сплошность образцов должны соответствовать требованиям НД на испытуемое покрытие. Образцы с дефектами покрытия к испытаниям не допускаются.

М.2.3 Количество испытуемых участков на трубопроводе определяет количество шурфов.

М.3 Проведение испытаний

М.3.1 Переходное электрическое сопротивление покрытия (рисунок М.1) на новых трубах измеряют методом «мокрого контакта» с применением тераомметров или мегомметров. На поверхность покрытия трубы (или образца, отрезанного от трубы) по периметру накладывают тканевое полотенце, смоченное 3 %-ным раствором сернокислого натрия, затем на полотенце накладывают металлический электрод-бандаж шириной не менее 0,4 м и плотно стягивают его болтами или резиновыми лентами. Для исключения влияния поверхностной утечки тока через загрязненную или увлажненную поверхность изоляционного покрытия дополнительно по обе стороны накладывают два экранирующих электрода-бандажа шириной не менее 0,05 м, так чтобы они не контактировали с грунтом.

Для измерения подключают клемму Л (линия) тераомметра к электроду-бандажу 4, клемму 3 (земля) – к металлу трубы 1, клемму Э (экран) – к экранирующим кольцевым электродам-бандажам 3.

1 - стенка трубы; 2 - контакт с трубой; 3 - экранирующие кольцевые электроды-бандажи;
4 - кольцевой электрод-бандаж; 5 - тканевое полотенце; 6 - изоляционное покрытие трубы;
7 - тераомметр или мегомметр с клеммами З, Л, Э

Рисунок М.1 – Схема измерения переходного электрического сопротивления изоляционного покрытия на трубах методом «мокрого контакта»

М.3.2 При измерении переходного электрического сопротивления покрытия на эксплуатирующихся подземных трубопроводах в местах шурфования (рисунок М.2.) на поверхность покрытия трубопровода, очищенную от грунта не менее чем на 0,8 м по его длине, по периметру накладывают тканевое полотенце, смоченное 3 %-ным раствором сернокислого натрия, на полотенце накладывают металлический электрод-бандаж шириной не менее 0,4 м и плотно стягивают его болтами или резиновыми лентами. Для исключения влияния поверхностной утечки тока через загрязненную или увлажненную

1 – контакт с трубой; 2 – экранирующие кольцевые электроды-бандажи; 3 – кольцевой электрод-бандаж; 4 – тканевое полотенце; 5 – изоляционное покрытие трубы; 6 – стенка трубы; Е – источник постоянного тока; R – потенциометр; V – высокоомный вольтметр; mА – миллиамперметр

Рисунок М.2 – Схема измерения переходного электрического сопротивления изоляционного покрытия методом «мокрого контакта» на уложенных в грунт трубопроводах (в шурфах)


поверхность изоляционного покрытия дополнительно по обе стороны накладывают два экранирующих электрода-бандажа шириной не менее 0,05 м, так чтобы они не контактировали с грунтом.

Резистором устанавливают рабочее напряжение 30 В и снимают показания амперметра и вольтметра.

Допускается измерять переходное электрическое сопротивление покрытия на уложенных в грунт трубопроводах мегомметром, например марки М 1101, при этом измерения проводят, как указано на рисунке М.1.

Если нет необходимости повреждать покрытие (например, для измерения адгезии), клемму 3 замыкают не на оголенный участок трубы, а на стальной штырь, вбитый в грунт рядом с трубопроводом.

М.4 Обработка результатов испытаний

М.4.1 Переходное электрическое сопротивление изоляционного покрытия на новых трубах , Ом·м2, вычисляют по формуле

= R1S1. (М.1)

где R1 – показания тераомметра или мегомметра, Ом;

S1 – площадь электрода-бандажа, имеющего контакт с изоляционным покрытием, м2.

М.4.2 Переходное электрическое сопротивление покрытия , Ом·м2, на уложенных в грунт трубопроводах вычисляют по формуле:

(М.2)

где Vпокр - падение напряжения между трубопроводом и бандажом (по показаниям вольтметра), В;

Iпокр - сила тока в цепи, А;

S2 - площадь электрода-бандажа, имеющего контакт с изоляционным покрытием трубопровода, м2.

Покрытие считают выдержавшим испытания, если переходное электрическое сопротивление соответствует указанному в таблице 7 настоящего стандарта.

М.5 Оформление результатов испытаний

М.5.1 Результаты испытаний для новых труб оформляют в виде протокола, в котором указывают:

- наименование предприятия-изготовителя и его адрес;

- номер партии труб с покрытием;

- дату изготовления труб с покрытием;

- результаты определения среднего значения переходного электрического сопротивления покрытия;

- должность, фамилию, подпись лица, проводившего испытания;

- дату испытаний.

М.5.2 Результаты измерений переходного электрического сопротивления покрытия на уложенных в грунт трубопроводах заносят в протокол по форме М.1.



Форма М.1





_____________________________________________

наименование организации




Протокол
определения переходного электрического сопротивления покрытий методом «мокрого контакта» на уложенных в грунт трубопроводах



Наименование трубопровода, его протяженность ___________________________________

Участок трубопровода (номер шурфа) ____________________________________________

Тип и конструкция защитного покрытия __________________________________________



Дата

Номер шурфа

Диаметр трубы, м

Падение

напряжения

(по показаниям вольтметра) Vпокр, В

Сила тока в цепи Iпокр, А

Площадь

электрода-бандажа, контактирующего с трубой S2, м2

Значение переходного электрического сопротивления покрытия Rпер2, Ом·м2























Переходное электрическое сопротивление покрытия трубопровода _____________________________

соответствует, не соответствует
требуемому значению

__________________________________ _____________ ____________________

должность лиц, проводивших измерения личная подпись расшифровка подписи




















Приложение Н

(справочное)


Определение сопротивления вдавливанию


Метод предназначен для проведения испытания полимерных материалов и покрытий на их основе по показателю сопротивления вдавливанию и установления соответствия их требованиям настоящего стандарта.

Сущность метода заключается в определении сопротивления прессованного материала или покрытия вдавливанию (пенетрации) при нагрузке 10 Н/мм2.

Н.1 Образцы для испытаний

Образцами для испытаний являются пластины прессованного материала по ГОСТ 16336 размером 150×150 мм, толщиной не менее 2 мм или образцы покрытия (свидетели) по НД на эти покрытия с гладкой ровной поверхностью без вздутий, сколов, трещин, раковин и других дефектов.

Н.2 Средства контроля и вспомогательные устройства

Толщиномер изоляции

Электрошкаф сушильный лабораторный типа СНОЛ 3,5.3,5.3,5/3М или другой аналогичный с точностью регулирования температуры ±2 °С (или водный термостат с терморегулятором).

Термометр метеорологический по ГОСТ 112.

Стержень металлический диаметром (1,8±0,1) мм общей массой (250±20) г.

Дополнительный груз массой (2250±0) г.

Индикатор часового типа ИЧ1ОМД по НД с ценой деления 0,01.

Часы механические.

Металлическая подложка размером 150×150мм (размеры жестко не нормируются) или образец покрытия на стальной подложке.

Линейка измерительная металлическая по ГОСТ 427.

Н.3 Подготовка к испытанию

Н.3.1 Образцы испытывают не ранее чем через 16 ч после прессования или нанесения покрытия.

Н.3.2 Устанавливают переключатель электрошкафа в положение, соответствующее температуре испытания 20 °С или 40 °С.

Н.3.3 Устанавливают образец на металлическую подложку и выдерживают при температуре (20±2) °С или (40±2) °С в течение не менее 60 мин.

Н.4 Проведение испытаний

Н.4.1 На испытуемый образец устанавливают стержень и через 5 с на индикаторе устанавливают нулевое значение, после чего добавляют груз массой 2250 г.

Н.4.2 Через 24 ч снимают со шкалы индикатора показания глубины вдавливания с точностью до 0,01 мм.

Н.4.3 Испытания выполняют в трех точках образца, расстояние между которыми не менее 30 мм.

Н.5 Обработка результатов испытаний

Н.5.1 Значение сопротивления вдавливанию Рср, мм, для каждого образца вычисляют по формуле

(Н.1.)

где Pi– значение сопротивления вдавливанию для i-й точки, мм;

n – количество испытанных точек.

Н.5.2 Сопротивление вдавливанию оценивают как удовлетворительное, если

Рср ≤ Рн (Н.2.)

где Рн – нормируемое значение сопротивления вдавливанию по настоящему стандарту.

Н.5.3 Если Рср > Рн, испытания проводят на удвоенном количестве образцов. Результаты повторных испытаний считают окончательными.

Н.6 Оформление результатов испытаний

Результаты испытаний оформляют протоколом, в котором указывают:

- марку материала и номер партии;

- сопротивление вдавливанию, мм;

- фамилию, имя, отчество, подпись и должность лиц, проводивших испытания;

- дату проведения испытания.


Приложение П

(справочное)



Покрытия для защиты от наружной коррозии трубопроводов тепловых сетей

и условия их прокладки


П.1 Характеристики покрытий и условия их нанесения приведены в таблице П.1.

Таблица П.1

Условия нанесения покрытия

Конструкция

(структура) защитного покрытия

Толщина покрытия, мм

Способ

прокладки теплопровода

Вид

теплоизоляции

Максимально допустимая температура теплоносителя, ºС

Базовые

Силикатно-эмалевое (два слоя эмали марки 155Т или марки МК-5, оплавленной при температуре 800 ºС)

0,5 - для труб диаметром до 159 мм включ.;

0,6 - для труб диаметром св. 159 мм

Подземный в каналах и бесканальный

Все виды тепловой изоляции

300

Алюмокерамическое (один слой покрытия плазменного нанесения из смеси порошкового алюминия марки ПА-4 (85 %) и ильменитового концентрата (15 %)

Не менее 0,25

То же

Все виды тепловой изоляции, рН водной вытяжки которой от 2,5 до 10,5

300

На основе метализационного алюминия с пропиткой кремнийорганическими красками (два слоя алюминия, один слой краски)

Не менее 0,25

»

Все виды тепловой изоляции, рН водной вытяжки которой от 4,5 до 9,5

150

Органосиликатное марки ОС-51-03 (с термообработкой при температуре 200 ºС)

Не менее 0,25

Подземный в каналах

Все виды тепловой изоляции

180

Трассовые

Органосиликатное марки ОС-51-03 с отвердителем 1)

Не менее 0,45

Подземный в каналах

Все виды тепловой изоляции

150

Эпоксидное (три слоя эпоксидной эмали марки ЭП-969) 1)

Не менее 0,1

То же

Все виды подвесной тепловой изоляции

150

Кремнийорганическое (три слоя кремнийорганической краски)1)

Не менее 0,25

»

То же

150

1)Применяют при ремонте теплопроводов, а также для изоляции стыков и мест присоединений.



Приложение Р

(справочное)



Измерение поляризационных потенциалов при электрохимической защите


P.1 Метод измерений поляризационных потенциалов на подземных стальных трубопроводах

Р.1.1 Поляризационные потенциалы Е на подземных стальных трубопроводах измеряют с помощью датчиков потенциала на специально оборудованных стационарных контрольно-измерительных пунктах двумя методами:

метод 1 - при помощи стационарного медно-суль-фатного электрода сравнения длительного действия и датчика поляризационного потенциала (рисунок Р.1);

метод 2 - при помощи датчика поляризационного потенциала и переносного медно-сульфатного электрода сравнения.

Р.1.2 Образцами для измерений являются участки трубопроводов, расположенные в зоне действия средств электрохимической защиты.

Р.1.3 Средства контроля и вспомогательные устройства

Приборы для измерений потенциала любого типа со встроенным прерывателем тока поляризации датчика.

Электрод сравнения медно-сульфатный длительного действия стационарный с датчиком потенциала.

Электрод сравнения переносной медно-сульфатный.

Труба асбоцементная диаметром от 100 до 120 мм для установки переносного медно-сульфатного электрода сравнения.

Датчик потенциала в виде стальной пластины размером 25×25 мм, изолированной с одной стороны мастикой. Датчик крепят на корпусе стационарного медно-сульфатного электрода сравнения (рисунок Р.1) или на асбоцементной трубе.

Оборудование стационарных контрольно-измери-тельных пунктов:

- для проведения измерений по методу 1 стационарный медно-сульфатный электрод сравнения длительного действия с датчиком потенциала устанавливают так, чтобы дно корпуса медно-сульфатного электрода сравнения и датчик находились на уровне нижней образующей трубопровода и на расстоянии 100 мм

1 - трубопровод; 2 - контрольные проводники; 3 - прибор со встроенным прерывателем тока поляризации датчика с клеммами: С - для подключения сооружения (трубопровода), И.Э - электрода сравнения, В.Э - датчика потенциала; 4 - стационарный медно-сульфатный электрод сравнения; 5 - датчик потенциала


Рисунок Р.1 – Схема измерения поляризационного потенциала на стационарных контрольно-измерительных пунктах