4.9. Ширина вертикальных швов между массивами не должна превышать минимальный размер каменного заполнения их полости. При ширине вертикальных швов более 10 см их следует перекрывать железобетонными элементами.

Возведение сооружения рекомендуется производить этапами (см. рис. 9), включающими установку элементов жесткого экрана каждого курса и наброску камня и защитных массивов до верха установленных элементов.

Работы каждого этапа следует выполнять захватками с опережением работ последующего этапа по фронту сооружения не более, чем на 30-50 м. Каменную постель допускается отсыпать на всем протяжении сооружения.

Рис. 9. Последовательность производства работ

Руководитель темы,

директор Ленморниипроекта                                                            А. Ф. Парфенов

Ответственный исполнитель,

главный специалист НИОГС, к.т.н.                                                  А. К. Кривов

Заведующий научно-исследовательским

отделом гидротехнических сооружений,

к.т.н.                                                                                                     Ф. А. Мартыненко

Начальник сектора стандартизации и

метрологии                                                                     В. Г. Дементьев

Нормоконтролёр                                                                                 Л. А. Уваров

Соисполнитель

ЦНИИС Минтрансстроя

Зав. отделом гидротехнических

сооружений, к.т.н. профессор                                                           А. И. Кузнецов

ПРИЛОЖЕНИЕ I

(рекомендуемое)

ПРИМЕР расчета и конструирования оградительного сооружения из наброски с жестким экраном в виде железобетонного пустотелого массива с камерой гашения (рис. 10)

В примере дана принципиальная конструкция сооружения, приведены расчеты по определению нагрузок от волновых и ледовых воздействий на сооружение и его элементы и расчеты общей устойчивости сооружения, определяющие его габариты.

По расчетам прочности элементов конструкции даны только общие указания, т. к. эти расчеты не отличаются от обычных расчетов инженерных сооружений.

1. ИСХОДНЫЕ ДАННЫЕ

Класс капитальности - II.

Сооружение находится в мелководной зоне Балтийского моря.

1.1. Параметры волн

а) эксплуатационный период

h = 3,0 м;                      = 58,0 м;                        Т = 7 с;

б) строительный период

h = 2,0 м;                        = 30,0 м.

1.2. Максимальная толщина льда 1 % обеспеченности h = 0,42 м; коэффициент торосистости Кт = 1,3.

1.3. Отметка расчетного горизонта воды + 1,0 м; отметка дна минус 7,0 м.

1.4. Грунт основания - песчаный

 = 30;                                                      

с = 0.

Рис. 10. Сооружение с экраном из железобетонных пустотелых массивов с камерой гашения (размеры в см):

1 - обратный фильтр (щебень, гравий); 2 - камень массой 30 - 100 кг; 3 - камень массой более 960 кг; 4 - упорный тетрапод; 5 - тетраподы; 6 - железобетонные массивы; 7 - камера гашения; 8 - железобетонная балка; 9 - поперечные стенки-рамы; 10 - рамы-перегородки

1.5. Материал наброски: фигурные массивы - тетраподы.

1.6. Коэффициент полноты наклонной и поперечных стенок сооружения Кпл = 0,7.

2. ГАБАРИТЫ ЗАЩИТНОЙ НАБРОСКИ

Zг = h = 3,0 м;

bг = 0,06  l = 0,06  58 = 3,48  3,5 м

Угол наклона плиты камеры гашения и откоса наброски к горизонту a = 45.

3. МАССА ЭЛЕМЕНТОВ НАБРОСКИ И ПОСТЕЛИ

Массивы принимаем одного размера для всех глубин. Массу их определяем по наиболее неблагоприятному условию, когда Z  0,7h по СНиП 2.06.04-82.

3.1. Масса тетраподов

С учетом коэффициента надежности для сооружений II класса Kн = 1,2 (см. СНиП II-50-74 п. 3.2)

Принимаем по ГОСТ”у 20425-75 тетраподы Т-3, которые имеют массу 3,0 тонны и максимальный размер Н = 1,70 м.

Толщину слоя тетраподов принимаем по указанию СН 288-64 (п. 6.22) равной

t1 = 1,5H ?? 2,60 м.

3.2. Масса камня на откосе постели при ctg  = 2

при Z = 6 м на отметке - 5,000 м по СНиП 2.06.04-82

С учетом Кн = 1,2 масса камня принимается равной

4. ОПРЕДЕЛЕНИЕ ДЕЙСТВУЮЩИХ СИЛ

4.1. Давление волны (см. СНиП 2.06.04-82)

4.1.1. Эксплуатационный случай

db = 8,0 м  1,5 h = 1,5  3 = 4,5 м

db2 = 6,0 м  1,25 h = 1,25  3 = 3,75 м

При ;  находим по рис. 2 СНиП”а kbz = 0,47.

Расчетная глубина по формуле (1) СНиП”а.

м

Волновое число

Возвышение свободной волновой поверхности по формуле (2) СНиП”а

,                                           (2)

Ординаты эпюры горизонтального волнового давления на сплошную вертикальную плоскость вычисляем в соответствии с указаниями п.1.4. СНиП"а.

Значение коэффициентов К2 - К5, К8 - К9 определяем по графикам рис. 3, 4, 5 предварительно вычислив крутизну волны.

Значение ординат Рс эпюры волнового давления определяем по формулам таблицы 1 СНиП"а

рci = kiρgh.

Результаты расчетов сведены в табл. 5 (см. также рис. 11а)

Таблица 5

№ точек

Загрубление точек, % м

Значение коэффициентов ki

Значение волнового давления Pci МПа

1

-3,76

-

-

 

2

0

I2

0,95

23,5

3

1,75

I3

0,75

22,5

4

3,5

I4

0,67

20,1

5

7,0

I5

0,62

18,6

6

на отк. -5,0

-

-

19,0

Площадь эпюры горизонтального волнового давления на сплошную вертикальную плоскость Аpx = 231 кН/п.м.

Ординаты эпюры горизонтального волнового давления на сплошной вертикальный вираж, защищенный наклонной перфорированной плитой и укладкой тетраподов на ее поверхности, определяются по формуле

, где kc = 0,6

Рис. 11. Эпюры волнового давления (интенсивность кПа). Эксплуатационный случай:

а) - на вертикальную стенку; б) - на расчетные плоскости сооружения с камерой гашения при расчете конструкции экрана на сдвиг; в) - на сплошную наклонную плиту (a = 45), защищенную тетраподами; г) - на перфорированную (30 %) наклонную плиту камеры гашения, защищенную тетраподами.

Значения ординат этой эпюры приведены на рис. 11б; полное горизонтальное волновое давление на вертикальный экран, равно площади эпюры давления

Это давление принимается также действующим на расчетную вертикальную плоскость, проходящую через нижний край наклонной перфорированной плиты и должно учитываться при расчете устойчивости экрана на сдвиг (см. рис. 11б); при этом дополнительная вертикальная пригрузка конструкции экрана от волнового давления определяется по формуле

,

где    kпл - коэффициент полноты (kпл = 0,7)

Согласно указаниям [12] такое же как pbx давление принимается действующим перпендикулярно к поверхности сплошной наклонной стенки при угле наклона ее к горизонту ?? > 45° (см. рис. 11в)

Ординаты эпюры этого давления определяются по формуле

С учетом перфорации наклонной плиты в размере 30 % ординаты эпюры давления, нормальной к ее поверхности, определяются по формуле

Эта эпюра давления учитывается при расчете прочности наклонной перфорированной плиты (см. рис. 11г).

4.1.2. Строительный случай - наброска тетраподов на одном из курсов массивов отсутствует.

Для этого случая необходимо установить только волновые нагрузки определяющие устойчивость массивов непригруженных тетраподами. Определяющими прочность элементов конструкции являются другие нагрузки (волновые эксплуатационные, собственный вес).

Расчет аналогичен предыдущему

db = 8,0 м                                  db2 = 6,0 м

при  и  по рис. 2 СНиП”а kвч = 0.

Расчетная глубина

Волновое число

Возвышение свободной волновой поверхности

Значение ординат эпюр волнового давления определены по формуле СНиП”а

Результаты расчетов сведены в табл. 6 и приведены на рис. 12

Таблица 6

№ точек

Заглубление точек, Z м

Значение коэффициентов ki

Значение волнового давления, кПа

1

-2,49

-

-

0

2

0

k2

0,74

14,8

3

1,5

k3

0,55

11,0

4

3,0

k4

0,44

8,8

5

6,0

k5

0,35

7,0

Рис. 12. Строительный случай - перфорированная наклонная плита не покрыта тетраподами. Эпюры волнового давления:

а) на сплошную вертикальную стенку; б) на вертикальную плиту экрана и на расчетную плоскость всего сооружения (с учетом коэффициента снижения kс = 0,8; интенсивность в кПа)

Площадь эпюры горизонтального волнового давления на сплошную вертикальную плоскость

Для строительного случая, когда на наклонной плите камеры гашения отсутствуют тетраподы, коэффициент снижения волнового давления на вертикальную плиту экрана равен kc = 0,8. Полное давление волны, на которое рассчитывается вертикальная плита экрана и все сооружение на устойчивость равно

Дополнительная вертикальная пригрузка от волнового давления, учитываемая при расчете сооружения на сдвиг

4.2. Ледовая нагрузка

Ледовую нагрузку следует учитывать только при расчете сооружения полного профиля (с нагрузкой тетраподами). В соответствии с этим должен составляться проект производства работ.

В соответствии с СНиП 2.06.04-82 и руководством к СНиП II-57-75 определяем горизонтальное и вертикальное давление от льда.

Fh - горизонтальную составляющую силы определяем по формуле:

Среднесуточная температура воздуха за 6 дней tc = -28?? при солености 1-2 % по СНиП 2.06.04-82

для морского льда

Угол наклона к горизонту режущей грани с учетом ее обледенения на 20

Считая нагрузку на 1 п.м., принимаем b = 1 м

В соответствии с указаниями руководства к СНиП II-57-75 повышенная шероховатость откосов обуславливает увеличение нагрузок, что учитывается введением коэффициентов k1 и k2

где k1 = 1 + 0,055  (10 - m); при  = 45 m = 1 и k1 = 1,5;

k2 = 3 (принято для откоса тетраподов);

В соответствии с СНиП 2.06.04-82 точку приложения равнодействующей ледовой нагрузки принимаем ниже расчетного уровня воды на 0,3 ha.

Расчетный уровень для льда +1,15 м.

Отметка действия льда

FV - вертикальную составляющую силы определяем в соответствии с указаниями Руководства к СНиП II-57-75

4.3. Давление заброски (рис. 13 и формула 11)

Вес призм обрушения для расчетных плоскостей:

1) 1-2 (шов 1-1)

2) 1-2 (шов 2-2)

3) 1-2 (шов 3-3)

Рис. 13. К определению давления льда и наброски при расчете устойчивости на сдвиг по швам конструкции экрана.

Давление наброски при одновременном давлении льда (с = 2,17 по табл. 3) для расчетных плоскостей:

1) 1-2 (шов 1-1)

2) 1-2 (шов 2-2)

3) 1-2 (шов 3-3)

4.4. Веса элементов конструкции (с учетом взвешивания при горизонте воды на отметке +1,0 м - рис. 10 и 14)

4.4.1. Вес тетраподов, пригружающих экран

,

где    W - полный объем элемента;

kпл - коэффициент полноты (по формуле 7);

 - объемный вес.

Для тетраподов                              

над водой                                        

под водой                                        

Рис. 14. К определению веса элементов конструкции.

1) На 1 курсе ж.б. пустотелых массивов

;

2) На 2 курсе массивов

;

3) На 3 курсе массивов

; ;

4.4.2. Веса железобетонных пустотелых массивов

Поперечные стенки, перегородки и наклонная плита массивов имеют перфорацию в размере 30 %. Для этих элементов . Длина массивов по фронту l = 5,0 м.

Для железобетона над водой          

под водой                                          

1) Массив 3 курса (3 м над водой, 1 м под водой)

Gм - вес массива;     Gн.пл. - вес наклонной плиты;

Gпоп. - вес поперечных стен; Gбал. - вес балки;

2) Массив 2 курса (под водой)

3) Массив 1 курса

5. РАСЧЕТ УСТОЙЧИВОСТИ ЖЕСТКОГО ЭКРАНА

Для удобства практического использования РД формулу (12) преобразуем

Величина А для различных случаев расчета устойчивости сооружений II класса ответственности помещена в табл. 7

Таблица 7

Характер потери устойчивости

Величина А

строительный случай

эксплуатационный случай

Сдвиг по плоскости и глубинный сдвиг по ломаным (фиксированным) поверхностям скольжения

1,15

1,20

Глубинный сдвиг по круглоцилиндрическим поверхностям (при расчете по методу Крея-Терцаги)

0,95

1,0

Опрокидывание вокруг ребра вращения

1,50

1,60

где      R - сумма удерживающих сил;

F - сумма сдвигающих сил.

По результатам выполненных расчетов устанавливаем, что определяющей силой, сдвигающей сооружение, является сумма равномерно действующих давлений льда и наброски

Схема действия этих сил приведена на рис. 13.

5.1. Эксплуатационный случай

5.1.1. Устойчивость на сдвиг

Коэффициент трения бетона по камню и по бетону fб = 0,5

1) По каменной постели (шов 1-1)

2) По шву 2-2