При щебеночных или щебеночно-гравийных покрытиях, не обработанных органическими вяжущими материалами, вследствие смещения части материала одежды на обочину или вследствие того, что кромки дорожной одежды покрыты слоем грунта, бывает трудно установить ширину проезжей части. Для уточнения края дорожной одежды на обочине, у кромки проезжей части, прорывают продольные ровики длиной не менее 1 м и шириной 0,2 - 0,25 м. За ширину покрытия на гравийных дорогах серповидного профиля принимается ширина всей россыпи гравия.

Для установления размеров и характеристики толщины конструктивных слоев существующей дорожной одежды (гранулометрический или петрографический состав, плотность и цементация материалов в слоях покрытия, степень загрязненности материалов, наличия и состояния песчаного основания, состояния корыта и дренажных устройств) в пределах проезжей части дороги бурят скважины или пробивают лунки диаметром 15 - 20 см. Для этой цели в МАДИ сконструирована буровая установка на базе автомобиля ЗИЛ-150, позволяющая вести бурение дорожной одежды всех типов на глубину до 1,0 м. Буровой агрегат, расположенный в задней части кузова - фургона, работает от двигателя автомобиля. Наличие сменных буровых колонок позволяет бурить скважины различного диаметра.

Бурение проводит бригада в составе младшего научного сотрудника, водителя-механика и операторов-лаборантов. На расстоянии 75 м от автомобиля выставляют знаки «Внимание», а на расстоянии 30 м - знаки «Осторожно - впереди дорожные работы». Лишь после этого буровую установку подготавливают к бурению. Для этого механик-водитель из кабины автомобиля переходит к пульту управления буровым агрегатом, а третий оператор подкладывает под колеса автомобиля специальные упорные клинья и снимает с шестигранной рабочей штанги предохранительный хомут. В процессе бурения один из операторов заливает в вертлюг воду и наблюдает за положением тросов, а второй работает на нажимной лебедке. Подъем, спуск и вращение буровой колонки осуществляет механик-водитель. Третий оператор во время бурения зондирует грунты в прилегающей к земляному полотну местности с помощью ручного бура, определяет уровень грунтовых вод, отбирает пробы грунта и устанавливает их тип.

После окончания бурения колонковую трубу поднимают в крайнее верхнее положение и автомобиль на 2 - 3 м перемещается по направлению движения. Из скважины удаляют керн и материал основания, а затем замеряют толщину слоев дорожной одежды с точностью до 1 см. Для оценки подстилающих грунтов проводят дополнительное бурение скважины ручным буром до глубины 1,5 - 1,8 м. Лишь после этого скважину тщательно заделывают, предварительно отобрав необходимое количество проб грунта подстилающего основания и отдельных слоев дорожной одежды.

Младший научный сотрудник за период бурения составляет кроки участка дороги (рис. 52) в масштабе 1:200, регистрирует на них дефекты и разрушения дорожной одежды, разрез ее по результатам бурения с указанием толщины отдельных слоев и визуальной характеристикой качества материала, а также поперечный профиль участка бурения, местоположение скважины относительно оси и кромок проезжей части и положение участка в плане и продольном профиле.

Рис. 52. Карточка результатов бурения дорожной одежды

При проведении бурения на покрытии при помощи установок, смонтированных в кузове автомобиля или на двухосных прицепах, надлежит принимать ряд мер предосторожности:

1. До начала бурения под колеса автомобиля должны быть подложены упоры, а автомобиль поставлен на ручной тормоз.

2. Необходимо проверить, что тросы и движущиеся части агрегата не касаются вещей в кузове и частей автомобиля.

3. Управлять рычагами бурового агрегата разрешается только шоферу автомобиля-лаборатории или специалисту механику, прошедшему инструктаж по буровым работам. Всем остальным браться за рычаги управления категорически воспрещается.

4. При работе бурового агрегата в кузове автомобиля может находиться только механик.

5. Высверливание кернов из покрытия при станке, работающем от двигателя автомобиля, разрешается только на низких передачах из-за возможности обрыва троса. Запрещается доливать воду в вертлюг во время спуска или подъема снаряда. Подъем снаряда можно производить только при отпущенном тросе нажимной лебедки.

6. До начала какой-либо работы с буровым инструментом под автомобилем (смена колонковой трубы, коронки, выбивание керна и т.д.) необходимо тщательно закреплять предохранительный хомут на шестиграннике.

Движение автомобиля с колонковой трубой на шестиграннике на месте работ с одного поперечника на другой допускается только на II передаче, со скоростью не выше 5 - 7 км/час.

При переездах на большее расстояние колонковая труба должна быть снята с шестигранника, последний поднят в крайнее верхнее положение и тщательно закреплен предохранительным хомутом.

На каждом избранном для испытаний поперечнике закладывают 2 и 3 скважины (лунки). Среднюю скважину бурят по оси проезжей части, а крайние на расстоянии 0,6 - 0,8 м от кромки покрытия. Крайние скважины могут быть заменены ровиками или шурфами, отрываемыми у кромки покрытия. Лунки и скважины следует устраивать на неповрежденных участках покрытия. После окончания обследований скважины или лунки тщательно заделывают тем же материалом, из которого построено покрытие.

Расстояние между промерными поперечниками назначают в зависимости от типа дорожной одежды, ее конструктивных особенностей, однородности и состояния, но не реже чем через 2 - 3 км. На однородных бетонных покрытиях с земляным полотном из однотипных грунтов расстояние между промерными поперечниками может быть увеличено до 5 км. В этом случае определяющим параметром является состояние покрытия и возвышение бровки земляного полотна. На гравийных и щебеночных покрытиях расстояние между поперечниками нередко приходится сокращать до 1,0 км, а иногда и менее.

В журнале промеров фиксируют границы участков, на которые распространяются характеристики, полученные на данном поперечнике.

С каждого характерного участка отбирают не менее одного образца для анализа материалов дорожной одежды. В лаборатории, желательно полевой, определяют гранулометрический состав несвязных материалов отдельных конструктивных слоев дорожной одежды по стандартной методике просеиванием на ситах (при фракциях крупнее 0,1 мм) или с помощью пипетки (при фракциях мельче 0,1 мм). Плотность основания оценивают по отношению фактического объемного веса скелета грунта δфск к максимальному объемному весу скелета грунта при стандартном уплотнении δстск. Для этой цели отбирают пробу весом 3 кг. Влажность материала основания определяют в лаборатории по отношению фактической весовой влажности Wфф к полной максимальной влагоемкости Wmaxвл. Полную влагоемкость, необходимую для определения относительной влажности, находят по формуле:

                                                           (35)

где: δск - объемный вес материала, г/см3;

Δ - удельный вес материала, г/см3.

Весовую влажность определяют способом высушивания образцов в термостатах или сушильных шкафах.

Испытания на прочность, истираемость, морозостойкость, а также контрольные определения содержания битума в усовершенствованных покрытиях и другие свойства выполняют в стационарных лабораториях на образцах весом 10 кг.

Образцы из цементобетонных покрытий, в виде высверленных кернов, отправляют в лабораторию для оценки качества бетона в количестве не менее 3-х кернов с каждого поперечника. Наиболее рациональным методом в этом случае является испытание бетонных кернов на раскол по боковой поверхности. Этот метод более точно характеризует напряженно-деформированное состояние покрытия, чем прочность бетона на сжатие. Прочность бетона на растяжение при расколе определяют по формуле:

                                                          (36)

где: p - разрушающая нагрузка, равномерно распределенная по длине керна, кг;

d - диаметр керна, см;

h - высота керна, см.

Прочность бетона на растяжение при изгибе получают умножением Rраск на коэффициент K = 1,7 - 1,9.

Оценку качества бетона можно выполнить и в полевых условиях, применяя акустические методы оценки прочности.

Образцы асфальтобетонных и обработанных органическими вяжущими материалами слоев дорожной одежды подвергают в стационарных лабораториях предварительному экстрагированию вяжущих материалов и дальнейшей оценке гранулометрического состава минерального скелета (рис. 53). Для этой цели отбирают по одному образцу с поперечника.

Рис. 53. Кривая гранулометрического состава минеральной части асфальтобетона

По результатам бурения, в зависимости от гранулометрического состава, качества и состояния материала в отдельных слоях дорожной одежды оценивают модуль деформации (или упругости). Полученные в процессе промера скважин толщины конструктивных слоев и определенные модули деформации каждого слоя позволяют вычислить по формулам теории прочности нежестких дорожных одежд фактический эквивалентный модуль деформации всей дорожной одежды на рассматриваемом поперечнике. Расчетная величина модуля деформации может быть принята ориентировочно за показатель фактической прочности дорожной одежды.

На рис. 51 модули деформации, вычисленные по результатам бурения, указаны пунктирной линией (Eδср).

Более точную оценку прочности дорожной одежды получают путем испытания непосредственным измерением на дороге в полевых условиях пробным нагружением статическими и динамическими нагрузками, а также акустическими или радиометрическими методами. Последние пока еще применяют в порядке опытных исследовательских работ, результаты которых еще не доведены до возможности внедрения в массовую практику. Выбор метода испытаний обычно определяется типом дорожной одежды, наличием оборудования и направлением обследований.

Сущность статических методов заключается в измерении вертикальных деформаций, возникающих при нагружении дорожной одежды через жесткий дискообразный штамп (рис. 54 а, б) или при нагружении колесом расчетного автомобиля (рис. 55). Схема штампа приведена на рис. 48.

Рис. 54, а. Оценка прочности дорожной одежды вдавливанием жесткого штампа

Рис. 54, б. Общий вид рычажного пресса МАДИ

Рис. 55. Оценка прочности дорожной одежды рычажными прогибомерами

В первом случае штамп должен иметь площадь, равновеликую отпечатку колеса расчетного автомобиля. Нагрузку на штамп увеличивают ступенями до начала затухания деформации после каждого дополнительного нагружения. Эквивалентный модуль деформации или упругости всей дорожной одежды в целом находят из выражения:

                                                        (37)

где: p - удельное давление на штамп, кг/см;

D - диаметр штампа, см;

l - абсолютное значение вертикальной деформации, см;

λ - относительная деформация.

В результате регистрации величины вертикальных деформаций при различных ступенях нагружения, соответствующих возрастающим (также ступенями) удельным давлениям, получают криволинейную зависимость, так называемую кривую вдавливания штампа (рис. 56). Очертание кривой вдавливания зависит от условий, в которых работает дорожная одежда. Эта кривая может иметь как выпуклое (наиболее часто встречающееся), так и вогнутое очертание. Последнее указывает на близкое расположение от поверхности грунтового основания жесткого слоя, например, прослойки мерзлого грунта в начальный период оттаивания. Как частный случай, может иметь место прямолинейная зависимость, которой наиболее точно соответствуют теоретические схемы расчета нежестких дорожных одежд.

р

кг/см2

Абсолютный прогиб

Относительный прогиб

нагружение

разгружение

lср

lср

I

II

средн.

I

II

средн.

нагружение

разгружение

0,00

0,00

0,00

0,00

0,94

1,11

1,03

0,0000

0,0041

0,81

0,24

0,31

0,23

1,07

1,31

1,19

0,0011

0,0048

1,62

0,45

0,58

0,52

1,19

1,43

1,31

0,0021

0,0052

2,45

0,68

0,87

0,78

1,23

1,53

1,38

0,0031

0,0055

3,28

0,90

1,14

1,02

1,37

1,61

1,47

0,0041

0,0059

4,10

1,11

1,36

1,23

1,38

1,66

1,52

0,0043

0,0061

4,90

1,26

1,54

1,40

1,39

1,68

1,54

0,0056

0,0062

5,73

1,37

1,66

1,52

1,37

1,64

1,52

0,0061

0,0061

Рис. 56. Результаты оценки прочности дорожной одежды вдавливанием штампа

а - ветвь нагружения, б - ветвь разгрузки

Расчетное значение фактического модуля деформации дорожного покрытия определяют по максимально допустимой относительной вертикальной деформации λкр, спрямляя кривую зависимость λ от p на участке от начала координат до соответствующего λкр. В зависимости от степени капитальности покрытия максимально допустимую относительную деформацию принимают в пределах от 0,035 до 0,060.