При высоте первого этажа 3,3 м и более для увеличения ширины проемов рекомендуется проектировать панели с арочными перемычками. При таких перемычках, имеющих высоту в середине пролета не менее 0,5 м, а в зданиях высотой 10 и менее этажей допускается предусматривать проемы шириной до 4 м при шаге поперечных стен 3 и 3,6 м.

При необходимости применения более широких проемов рекомендуется увеличение прочности панелей первого этажа; в таких зданиях нет конструктивной необходимости в устройстве технического этажа.

2.28. Каркасные конструктивные системы в нижних нежилых этажах рекомендуется проектировать в следующих случаях:

для встроенных учреждений и предприятий, имеющих зальные помещения;

для встроенно-пристроенных учреждений и предприятий с залами, глубина которых превышает ширину жилого дома (15 — 20 м), с торговой площадью от 650 до 1000 м.

При проектировании пристроенных (в варианте встроенно-пристроенных) следует преимущественно использовать каркасные конструкции по каталогам типовых серий.

2.29. В зависимости от объемно-планировочного решения и функционального назначения здания каркасные конструкции нижних этажей рекомендуется проектировать в виде:

сборной или монолитной балочной клетки в пределах технического этажа с расположением балок под каждой несущей стеной вышележащих этажей. Конструктивная высота главных и второстепенных балок, определяемая высотой технического этажа, должна обеспечивать надежное и экономичное решение;

сборно-монолитного несущего «стола» с последующим расположением на нем стен вышележащих этажей.

2.30. При несоосном решении колонн каркаса нижних этажей и несущих стен верхних этажей устройство сборной балочной клетки из стен технического этажа рекомендуется в зданиях высотой до 10 этажей, где это решение более экономично по сравнению со сборно-монолитным столом. При большей этажности рекомендуется проектировать переходную конструкцию монолитной либо сборно-монолитной.

При каркасном решении первых этажей устойчивость и восприятие горизонтальных нагрузок рекомендуется обеспечивать стенами лестничных клеток, а в случае необходимости также дополнительными диафрагмами жесткости, и созданием диска перекрытий при помощи связей между плитами.

2.31. Расчет конструкций нижних нежилых этажей рекомендуется выполнять по прил. 3.

3. ПРИНЦИПЫ РАСЧЕТА НЕСУЩИХ КОНСТРУКЦИЙ

3.1. Конструкции жилых зданий проверяют расчетом по двум группам предельных состояний:

первая группа — по потере несущей способности или непригодности к эксплуатации;

вторая группа — по непригодности к нормальной эксплуатации.

Расчетом по первой группе предельных состоянии проверяются:

а) все конструкции здания для предотвращения разрушений при действии силовых воздействий в процессе строительства и расчетного срока эксплуатации здания, в том числе для предотвращения прогрессирующего обрушения в случае локального разрушения несущих стен в результате аварийных воздействий типа взрывов бытового газа, пожара, наезда тяжелого транспорта и т. п., а сборные конструкции, кроме того, для предотвращения разрушения при их изготовлении и перевозке;

б) основание здания для предотвращения потери его несущей способности при совместном действии вертикальных и горизонтальных нагрузок.

Расчетом по второй группе предельных состояний проверяются:

а) здание в целом для ограничения: ускорений колебаний, возникающих при пульсации ветрового напора; деформаций основания; прогибов верха здания;

б) плиты перекрытий и покрытия, лестничные площадки, марши и другие изгибаемые элементы для ограничения их прогибов и раскрытия трещин от вертикальных нагрузок;

в) стены здания для ограничения раскрытия трещин и взаимных смещений стен при действии вертикальных и ветровых нагрузок, неравномерных осадок оснований и температурно-влажностных воздействий.

3.2. Нагрузки и воздействия на конструкции жилых зданий определяют по СНиП 2.01.07—85.

При проектировании полносборных зданий стеновой конструктивной системы рекомендуется учитывать возможное перераспределение усилий, вызванное неодинаковыми деформациями усадки сопрягаемых стен. Для крупнопанельных зданий осевые деформации усадки ??sh стеновых панелей можно определять по табл. 4.

Таблица 4

Вид бетона и способ

Осевые относительные деформации усадки ??sh??105 для бетона класса по прочности на сжатие

формования

В2,5 — В3,5

В5 ?? В7,5

В12,5 ?? В15

В20 и более

Тяжелый цементный и плотный силикатный бетоны горизонтального формования

??

??

35

40

Тяжелый бетон кассетного формования

??

??

40

45

Легкий бетон горизонтального формования

35

45

50

??

Ячеистый:

вид А

50

50

50

??

вид Б

70

70

70

??

Примечания: 1. Табличные значения ??sh определяют деформации усадки, возникающие только после достижения бетоном проектной прочности по сжатию. Если отпускная прочность панелей ниже проектной, то табличные значения следует умножать на коэффициент 1,2. 2. Для районов со средней относительной влажностью воздуха 40 % и ниже, относимых согласно требованиям СНиП II-3-79** к «сухим», табличные значения ??sh следует увеличивать на 30 %. 3. Для панелей толщиной 20 см табличные значения следует умножать на коэффициент 0,8 при толщине 30 см — на 0,65, при толщине 40 см — на 0,55. 4. Коэффициенты по пп. 1—3 учитываются независимо. 5. К ячеистым бетонам вида А относятся автоклавные бетоны на цементном или смешанном вяжущем; вида Б — автоклавные бетоны на известковом вяжущем и безавтоклавные.

3.3. Жилые здания рекомендуется проектировать так, чтобы ускорения колебаний конструкций зданий, возникающие в результате пульсаций скоростного напора ветра, не превышали 0,1 м/с2. При определении величины ускорения учитывается расчетное значение ветровой нагрузки с коэффициентом перегрузки, равным единице. Для зданий стеновой конструктивной системы высотой менее 50 м разрешается не проверять значения ускорений.

3.4. Для зданий, рассчитываемых на совместное действие вертикальных и горизонтальных нагрузок по недеформированной схеме, прогиб верха здания с учетом податливости основания рекомендуется принимать не более 0,001 высоты здания. При расчете здания по деформированной схеме значение прогиба здания не ограничивается.

Предельные прогибы из плоскости плит перекрытий и панелей несущих стен принимаются согласно указаниям СНиП 2.03.01—84. Прогиб несущих стен из их плоскости допускается не проверять.

3.5. Предельное раскрытие трещин в сборных железобетонных элементах ограничивается СНиП 2.03.01—84. Взаимные сдвиги сборных элементов в стыках рекомендуется ограничивать следующими значениями: при длительном сдвиге — 0,6 мм при кратковременном — 0,8 мм, а раскрытие трещин в бетоне омоноличивания стыковых соединений, имеющих антикоррозионное покрытие — 1 мм.

Кратковременное раскрытие трещин (взаимный сдвиг панелей) определяется суммой постоянных, длительных и кратковременных нагрузок; длительное раскрытие трещин (сдвиг) — суммой постоянных и длительных нагрузок.

Раскрытие трещин, не пересекающих рабочую арматуру панелей, ограничивается из условия обеспечения необходимой звукоизоляции (для внутренних конструкций) или тепло- и водоизоляции (для наружных конструкций). Для панелей не допускается длительное раскрытие сквозных трещин.

Предельное раскрытие трещин в сборных элементах ограничивается СНиП 2.03.01—84.

3.6. Значения предельных деформаций основания зданий регламентируется СНиП 2.02.01—83.

Возникающие вследствие деформации основания крены здания не должны вызывать отклонения лифтовых шахт от вертикали, превышающие значения, установленные государственными стандартами. Предельно допустимые значения совместных неравномерных деформаций основания и здания устанавливаются расчетом исходя из обеспечения необходимой прочности, устойчивости и трещиностойкости конструкций.

При выполнении конструктивных требований, изложенных в настоящем Пособии, рекомендуется принимать без расчета следующие допустимые значения неравномерных деформаций основания:

а) для зданий перекрестно-стеновой и продольно-стеновой конструктивных систем:

относительный прогиб или выгиб продольных стен (в долях от длины изгибаемого участка) — 0,0008;

относительная разность осадок соседних продольных стен — 0,0016;

б) для зданий поперечно-стеновой конструктивной системы с ненесущими наружными стенами относительно разности осадок соседних поперечных стен — 0,0016.

При несущих наружных стенах или при наличии сквозных внутренних продольных стен предельные неравномерности деформаций для зданий с поперечными несущими стенами принимают по п. 3.6, а.

С указанными предельными значениями неравномерных деформаций сопоставляются деформации основания, подсчитанные без учета влияния жесткости конструкций здания на перераспределение нагрузок на основание.

3.7. При расчете конструкций и соединений следует учитывать коэффициенты надежности по назначению ??п, принимаемые согласно Правилам учета степени ответственности зданий и сооружений при проектировании конструкций равными:

0,95 — для жилых зданий высотой от 2 до 17 этажей включительно, а также высотой до 25 этажей при расчете по деформируемой схеме;

1 — для зданий высотой более 17 этажей при расчете по недеформированной схеме.

На коэффициент надежности по назначению умножают расчетные усилия или делят значения сопротивления материала конструкций.

3.8. Усилия в конструкциях рекомендуется определять, используя, расчетные схемы и предпосылки, наиболее полно отвечающие условиям действительной работы конструкций. При определении усилий в сборных конструкциях рекомендуется учитывать податливость стыковых соединений. Деформативные характеристики соединений сборных элементов разрешается принимать по указаниям прил. 4 настоящего Пособия.

При использовании приближенных методов расчета рекомендуется рассматривать два варианта напряженно-деформированного состояния конструкций, которые соответствуют наименьшей и наибольшей возможной жесткости (податливости) элементов стыковых соединений и связей, а в качестве расчетных принимать наибольшие значения усилий по указанным двум вариантам расчета.

Расчетные схемы

3.9. Расчетные схемы бескаркасных зданий классифицируются:

по характеру учета пространственной работы — на одно-, двух- и трехмерные;

по виду неизвестных — на дискретные, дискретно-континуальные и континуальные;

по виду конструкции, положенной в основу расчетной схемы, — на стержневые, пластинчатые, комбинированные.

3.10. При одномерной расчетной схеме здание рассматривается как тонкостенный стержень или система стержней, упруго или жестко защемленных в основании. Предполагается, что поперечный контур стержня (системы стержней) неизменяем.

При двухмерной расчетной схеме (рис. 22) здание рассматривается как плоская конструкция, способная воспринимать только такую внешнюю нагрузку, которая действует в ее плоскости. Для определения усилий в стенах от горизонтальной нагрузки условно принимается, что все стены, параллельные действию нагрузки, расположены в одной плоскости и имеют одинаковые горизонтальные перемещения в уровне перекрытий.

Рис. 22. Двухмерные (плоские) расчетные схемы бескаркасных зданий

а — вертикальная диафрагма с проемами; б — плоский составной стержень; в ?? заменяющая рама; г — ферменная модель

При трехмерной расчетной схеме (рис. 23) здание рассматривается как пространственная система, способная воспринимать приложенную к ней пространственную систему сил. Трехмерная расчетная схема наиболее точно учитывает особенности взаимодействия несущих конструкций, но расчет на ее основе наиболее сложен.

Рис. 23. Пространственные (трехмерные) расчетные схемы бескаркасных зданий.

а — фрагмент здания; б — расчетная схема в виде системы консольных стержней; в ?? то же, пространственного составного стержня; г — пластинчатой системы, рассчитываемой методом конечных элементов

3.11. В дискретных расчетных схемах неизвестные усилия или перемещения определяют для конечного количества узлов системы решения систем алгебраических уравнений. Дискретные расчетные системы наиболее приспособлены к условиям расчета на цифровых вычислительных машинах.

В дискретно-континуальных расчетных схемах неизвестные силовые факторы или перемещения задают в виде непрерывных функций вдоль одной из координатных осей (функциональные неизвестные). Неизвестные функции определяются решением краевой задачи для системы обыкновенных дифференциальных уравнений.

В континуальных расчетных схемах неизвестные силовые факторы или перемещения задают в виде непрерывных функций вдоль двух или трех координатных осей. Неизвестные функции определяются решением краевой задачи для системы дифференциальных уравнений в частных производных.

3.12. При стержневых расчетных схемах несущая система здания рассматривается в виде: набора параллельно расположенных балок с податливыми связями (составная балка), перекрестной системы балок, многоэтажной многопролетной рамы, решетчатой системы и др. Для определения динамических характеристик здания вся несущая система здания может рассматриваться как один консольный стержень.