2.15 горючий туман: Мелкие капли горючей жидкости, рассеянные в воздухе и образующие взрывоопасную смесь при нормальных атмосферных условиях.

2.16 температура вспышки: Самая низкая температура жидкости, при которой в условиях специальных испытаний над ее поверхностью образуются пары, способные воспламеняться в воздухе от источника зажигания, устойчивое горение при этом не возникает.

2.17 температура кипения: Температура жидкости, кипящей при давлении окружающей атмосферы 101,3 кПа (760 мм рт. ст).

2.18 давление насыщенного пара: Давление, при котором твердое вещество или жидкость находятся в состоянии равновесия с собственными парами.

2.19 температура самовоспламенения взрывоопасной газовой смеси: Наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение взрывоопасной газовой смеси.


3 Безопасность и классификация зон

3.1 Принципы безопасности

Технологическое оборудование, связанное с переработкой горючих материалов, должно проектироваться, эксплуатироваться и обслуживаться таким образом, чтобы утечки горючих веществ и, следовательно, уровень взрывоопасности зоны, в которой оно располагается, в нормальном режиме работы и при авариях были минимальными по частоте, длительности и количеству высвобождаемого горючего вещества.

При обслуживании технологического оборудования в условиях аварии уровень взрывоопасности зоны может выходить за установленный класс. В таких случаях работы должны проводиться с соблюдением специальных мер безопасности и с применением соответствующего оборудования.

В чрезвычайных ситуациях должно быть отключено все не требуемое для проведения работ по ликвидации аварии электрооборудование, при возможности остановлены процессы, отсоединены технологические емкости, устранены источники утечки и, если возможно, обеспечена дополнительная вентиляция.

В ситуациях, когда присутствует взрывоопасная газовая смесь, должны быть приняты следующие меры:

а) устранена возможность возникновения взрывоопасной газовой смеси вокруг источника воспламенения, или

б) устранен источник воспламенения.

В случаях, когда это невозможно обеспечить, защитные меры, технологическое оборудование и способ проведения технологического процесса должны быть такими, чтобы вероятность одновременного наличия взрывоопасной газовой смеси и источника воспламенения была ниже допустимого уровня.

Необходимый уровень безопасности может обеспечиваться применением как одной из перечисленных мер, если это признано эффективным, так и их сочетанием.

3.2 Цели классификации зон

Классификация зон - это метод анализа и классификации окружающей среды, в которой может присутствовать взрывоопасная газовая смесь, проводимый с целью выбора электрооборудования и устройства электроустановок, эксплуатация которых в присутствии данной смеси должна быть безопасной. Классификацию проводят с учетом разделения взрывоопасных газовых смесей по категориям и группам.

На практике очень трудно гарантировать эксплуатацию промышленных объектов, связанных с переработкой горючих материалов, таким образом, чтобы в воздухе отсутствовали горючие газы и в электрооборудовании не возникали источники воспламенения. Поэтому при наличии взрывоопасной газовой смеси следует использовать электрооборудование, конструкция которого до минимума снижает вероятность возникновения источника воспламенения. Одновременно необходимо учитывать то обстоятельство, что если вероятность возникновения взрывоопасной газовой смеси мала, то требования по взрывозащите к конструкции электрооборудования могут быть менее жесткими.

Путем простого знакомства с технологической установкой или ее проектом практически невозможно определить, какие части установки удовлетворяют требованиям зоны одного из трех классов. Поэтому при классификации взрывоопасных зон необходимо проводить анализ возможных условий возникновения взрывоопасной газовой смеси.

Предварительно, на первом этапе классификации, следует оценить вероятность возникновения взрывоопасной газовой смеси исходя из определения классов зон. Только после определения совокупности показателей - возможной частоты и длительности утечки (следовательно, и ее степени), скорости истечения и концентрации горючего вещества, надежности вентиляции и других факторов, влияющих на уровень взрывоопасности зоны, - можно установить возможность возникновения взрывоопасной газовой смеси.

Такой подход требует подробного анализа каждого элемента технологического оборудования, которое может стать источником утечки горючих веществ, способных образовать с воздухом взрывоопасную смесь.

Следует стремиться к тому, чтобы количество и размеры зон классов 0 или 1 были минимальными. Это может быть обеспечено выбором конструкции технологического оборудования и условиями его эксплуатации. Необходимо обеспечить, чтобы зоны в основном относились к классу 2 или не были взрывоопасными.

Если утечка горючего вещества неизбежна, необходимо использовать такое технологическое оборудование, которое является источником утечек второй степени, а если и это невозможно, т. е. когда неизбежны утечки первой степени или постоянные (непрерывные), то их количество должно быть минимальным.

При классификации зон перечисленные принципы имеют главное значение. Для снижения уровня взрывоопасности зоны, конструкция, условия эксплуатации и размещение технологического оборудования должны быть такими, чтобы даже при авариях утечка горючего вещества в атмосферу была минимальной.

После установления класса зоны и оформления соответствующих документов не допускается замена оборудования или изменение хода ведения технологического процесса. Это возможно только с согласия уполномоченного лица (организации), отвечающего за классификацию зоны. Несанкционированные действия в этой области могут привести к изменению уровня взрывоопасности зоны. После проведения работ по обслуживанию, перед началом дальнейшей эксплуатации, оборудование, которое определяет классификацию зоны, если оно подвергалось ремонту, должно быть тщательно проверено и должно быть установлено, что оно полностью соответствует первоначальному проекту.


4 Методика классификации зон

4.1 Общие положения

Классификация зон должна проводиться специалистами, знакомыми со свойствами горючих газов и паров, знающими технологический процесс и оборудование, в сотрудничестве с инженерами по безопасности, электриками и другим техническим персоналом. В настоящем стандарте содержатся рекомендации по классификации зон, в которых присутствует взрывоопасная газовая смесь, и по определению их размеров. Пример построения алгоритма для классификации взрывоопасных зон приведен на рисунке В.1 приложения В.

4.2 Источники утечки

Для установления класса взрывоопасной зоны должны быть определены источники и интенсивность утечек. Так как взрывоопасная газовая смесь может возникнуть только при смешивании горючего газа или пара с воздухом, необходимо установить наличие любого из горючих материалов в рассматриваемой зоне. В первую очередь должно быть установлено, находится ли горючий газ или пар (также, горючие жидкости и твердые вещества, которые могут образовать газ или пар) внутри технологического оборудования, которое не может быть полностью закрытым. Кроме этого должно быть выявлено технологическое оборудование, содержащее внутри взрывоопасную газовую смесь, и определены источники утечки горючих веществ, в результате которых взрывоопасная газовая смесь может образоваться снаружи.

Каждый элемент технологического оборудования (например, резервуар, насос, трубопровод, химический реактор и др.) должен рассматриваться как возможный источник утечки горючего вещества. Если какой-либо элемент оборудования не содержит горючего вещества, он не является источником образования взрывоопасной зоны вокруг него. То же относится к элементам, содержащим горючие вещества, утечка которых в атмосферу исключена (например, трубопровод с высоким качеством сварки не рассматривают как источник утечки).

Если тот или иной элемент оборудования является источником утечки горючего материала в атмосферу, прежде всего необходимо определить степень утечки согласно приведенным определениям на основании частоты и длительности утечки.

Вскрытие отдельных частей технологического оборудования, заключенных в корпус (например, во время замены фильтра или периодического заполнения), необходимо также рассматривать как утечку.

По предложенной методике каждую утечку горючего вещества классифицируют как постоянную (непрерывную), первой или второй степени.

Установив степень утечки, необходимо определить ее интенсивность и другие факторы, влияющие на класс и размеры зоны.

4.3 Классы зоны

Вероятность присутствия взрывоопасной газовой смеси в зоне а, следовательно, и ее класс зависят в основном от степени утечки и уровня вентиляции.

Примечание - Постоянная (непрерывная) утечка образует, как правило, зону класса 0, утечка первой степени - зону класса 1 и второй степени - зону класса 2 (см. приложение Б).

4.4 Размеры взрывоопасной зоны

Размеры взрывоопасной зоны, в основном, зависят от приведенных ниже химических и физических характеристик, одна часть которых относится к горючим материалам, а другая - к технологическим процессам и оборудованию. При оценке влияния каждого из приведенных ниже факторов на размеры взрывоопасной зоны сделано допущение, что характеристики остальных остаются неизменными.

4.4.1 Интенсивность утечки газа или пара

Очевидно, что чем выше интенсивность утечки, тем больше размеры взрывоопасной зоны. Интенсивность утечки определяется следующими свойствами источника утечки:

а) геометрией источника утечки.

Под геометрией имеют в виду физические характеристики источника утечки, например открытую поверхность жидкости, неплотное фланцевое соединение и др. (см. приложение А);

б) скоростью истечения горючего вещества.

Для конкретного источника утечки интенсивность утечки возрастает с увеличением скорости истечения горючего вещества. Если горючее вещество находится внутри технологического оборудования, то скорость истечения зависит от давления рабочего процесса и геометрии источника утечки. Размер образующегося при истечении облака горючего газа или пара определяется скоростью истечения и скоростью рассеивания. Газ и пар, поступающие из источника утечки с высокой скоростью, образуют конусообразную струю, которая, увлекая за собой воздух, обладает способностью «саморазбавления». При этом уровень взрывоопасности образующейся газовой смеси практически не зависит от скорости движения окружающего воздуха. Если же утечка происходит с низкой скоростью, или скорость струи уменьшается из-за какого либо препятствия, то струя рассеивается и ее «разбавление» и уровень взрывоопасности газовой смеси будет зависеть от скорости окружающего воздуха;

в) концентрацией горючего вещества.

Интенсивность утечки возрастает с увеличением концентрации горючего пара или газа в высвобождаемом горючем веществе;

г) испаряемостью горючей жидкости.

Испаряемость зависит, в основном, от давления насыщенного пара и теплоты парообразования горючей жидкости.

Если давление насыщенного пара неизвестно, то следует руководствоваться температурами кипения и вспышки. Взрывоопасная смесь не может существовать, если температура вспышки превышает максимальную температуру горючей жидкости. Чем ниже температура вспышки, тем больше размеры взрывоопасной зоны. Если горючее вещество поступает в воздух таким образом, что образуется туман (например, путем распыления), то образование взрывоопасной смеси возможно при температуре, которая ниже температуры вспышки.

Примечания

1 Температура вспышки горючих жидкостей не является точной физической величиной.

2 Некоторые жидкости (например, некоторые галогенные углеводороды) не характеризуются таким параметром, как температура вспышки, хотя они и могут образовывать взрывоопасную газовую смесь. В этих случаях следует сравнивать установившееся значение температуры жидкости, соответствующее концентрации насыщенного пара при нижнем концентрационном пределе воспламенения, с максимальной температурой жидкости;


д) температурой жидкости.

Давление насыщенного пара возрастает с температурой, что приводит к увеличению интенсивности утечки.

Примечание - Температура жидкости после утечки может возрасти, например за счет нагретой поверхности оборудования, в контакте с которым она находится, или высокой окружающей температуры.


4.4.2 Нижний концентрационный предел распространения пламени (воспламенения) (НКПР)

Для данного объема утечки горючего вещества, чем ниже НКПР, тем больше размеры взрывоопасной зоны.

4.4.3 Вентиляция

При увеличении уровня вентиляции размеры взрывоопасной зоны уменьшаются. Объекты, препятствующие вентиляции, могут увеличить размеры зоны. С другой стороны, такие препятствия, как стенки или потолки могут ограничивать размеры взрывоопасной зоны.

4.4.4 Относительная плотность газа или пара при утечке

Если газ или пар легче воздуха, то он будет подниматься вверх. Если же он тяжелее воздуха, то он будет скапливаться на уровне земли. Протяженность зоны в горизонтальном направлении на уровне земли будет возрастать с увеличением относительной плотности, а протяженность в вертикальном направлении над источником будет возрастать с уменьшением относительной плотности.

Примечания

1 Газы или пары с относительной плотностью менее 0,8 должны рассматриваться как более легкие, чем воздух, если же она более 1,2, то предполагается, что они тяжелее воздуха. Если относительная плотность газа или пара находится в промежутке между этими значениями, то следует учитывать обе возможности.