Таблица А.3 - Третье семейство

Испытание

Группа испытательных газов

Подводимая тепловая мощность или испытательное давление

Бутан/пропан

Пропан

с регулятором

без регулятора

Регулировка с использованием эталонного газа

G30

G31

pном

Qi

Зажигание, перекрестное зажигание с использованием эталонного газа

G30

G31

pном

0,95Qi

Проскок пламени в горелку при использовании предельного газа

G32

G32

pмин

0,95Qi

Отрыв пламени при использовании предельного газа

G31

G31

pмин

pмакс

0,95Qi

1,05Qi

Горение

Нормальная тяга (направленная снизу вверх)

G30

G31

pмакс

1,05Qi

G30

G31

1,075Qi

1,05Qi

Блокированный дымоход.

Обратная тяга (направленная сверху вниз)

G30

G31

pном

Qi

1)Qi является Qном или Qмин

ПРИЛОЖЕНИЕ Б

(справочное)

Схемы газового тракта

Б.1 Непосредственное зажигание основной горелки (ОГ)

- одновременное закрытие

- неодновременное закрытие

Б.2 Зажигание основной горелки от запальной горелки (ЗГ)

Б.2.1 Постоянная запальная горелка

ЗГ (Q ≤ 0,250 кВт)

Б.2.2 Периодическая запальная горелка

ЗГ (Q ≤ 0,250 кВт)

ЗГ (Q ≥ 0,250 кВт)

ЗГ (Q ≤ 0,250 кВт)

ЗГ (Q ≥ 0,250 кВт)

Б.2.3 Переменная запальная горелка

ЗГ (Q ≤ 0,250 кВт)

ЗГ (Q ≥ 0,250 кВт)

Классификация автоматических клапанов

В зависимости от направления силы, действующей на запорный элемент в результате давления газовой среды, клапаны подразделяют на классы:

- А, В и С - клапаны, в которых сила давления газовой среды направлена так, что создает дополнительное прижимное усилие запорного элемента к седлу клапана;

- D - клапаны, в которых направление силы давления газовой среды не установлено. Значения максимально допустимых протечек газовой среды для клапанов классов А, В и С указаны в таблице Б.1.

Значения протечек газовой среды для клапанов класса D не установлены.

Таблица Б.1

Класс клапана

Испытательное давление, кПа

Максимально допустимая протечка, дм3

А

16,5

2

В

5,5

2

С

1,1

2

ПРИЛОЖЕНИЕ В

(рекомендуемое)

Метод калибровки испытательного стенда для определения тепловых потерь Dp

Устанавливают на котел (см. рисунок И.1) хорошо изолированный сосуд для воды небольшого объема (250 см3), содержащий погруженный электрический нагреватель. Наполняют систему циркуляции и приводят в действие насос. Погруженный электрический нагреватель должен быть соединен с сетью электропитания. С помощью трансформатора с плавной регулировкой и электросчетчика устанавливают трансформатор так, чтобы температура циркулирующей воды достигла постоянного значения (продолжительность установления постоянного значения 4 ч и более). Фиксируют температуру окружающей среды и измеряют подводимую тепловую мощность.

Серии испытаний при различных значениях температуры окружающей среды позволяют получить тепловые потери испытательного стенда при различных значениях температуры циркулирующей воды в зависимости от температуры окружающей среды.

При проведении реальных испытаний фиксируют температуру окружающей среды и определяют тепловые потери Dp, соответствующие разности значений температуры окружающей среды и средних значений температуры испытательного стенда.

ПРИЛОЖЕНИЕ Г

(справочное)

Определение тепловых потерь испытательного стенда для косвенного метода и дополнительного подвода тепла от циркуляционного насоса испытательного стенда

Котел присоединяют к испытательному стенду в соответствии с рисунком И.9.

Насос 8 останавливают, а теплообменник 9 отключают с помощью трехходовых кранов 5, 13.

Включают циркуляционный насос 6, который должен работать в непрерывном режиме с постоянным расходом воды.

Значения разности температур (T - TA) измеряют в установившемся тепловом режиме для трех следующих состояний:

а) при выключенном электрическом водонагревателе 7;

б) при включенном электрическом водонагревателе 7 и разности температур в соответствии с формулой

(T - TA) = (40±5)°С; (Г.1)

в) при включенном электрическом водонагревателе 7 и разности температур в соответствии с формулой

(T - TA) = (60±5)°С, (Г.2)

где Т - средняя разность температур воды в прямой и обратной трубах, определенная в результате двух измерений при испытании № 1, °С;

TA - температура окружающей среды, °С.

Для измеренных величин составляют график подвода тепла от электрического водонагревателя как функции разности температур (T - TA), °С.

По полученному графику определяют значения тепловых потерь и дополнительного подвода тепла от циркуляционного насоса испытательного стенда.

ПРИЛОЖЕНИЕ Д

(справочное)

Метод определения времени работы котла при полной нагрузке

Котел присоединяют к испытательному стенду в соответствии с рисунком И.9. Водяной контур подключают по замкнутой схеме.

Установка должна содержать не менее 6 дм3 воды на 1 кВт номинальной подводимой тепловой мощности.

Газовый контур должен быть оснащен газовым счетчиком или манометром для измерения давления перед соплом.

При температуре воды (47 ± 1) °С котел включают в работу и измеряют время от момента розжига горелки до момента, когда под воздействием терморегулятора:

- значение подводимой тепловой мощности снижается до значения, определенного по формуле

0,37Qном + 0,63Qпониж, (Д.1)

- или значение давления перед соплом снижается до значения, определенного по формуле

, (Д.2)

где Qном - номинальная подводимая тепловая мощность, соответствующая полной нагрузке, кВт;

Qпониж - пониженная подводимая тепловая мощность, соответствующая частичной нагрузке, кВт;

рном - давление газа, соответствующее полной нагрузке, Па;

рпониж - давление газа, соответствующее частичной нагрузке, Па.

ПРИЛОЖЕНИЕ Е

(справочное)

Примеры вычисления нагрузочных коэффициентов для котла с несколькими значениями подводимой тепловой мощности

Таблица E.1

Подводимая тепловая мощность Qpi%

Нагрузочный коэффициент Fpi

20

0,3

40

0,3

60

0,25

70

0,15

Нагрузка котла: 30 %, 50 %, 100 %.

Нагрузочные коэффициенты (Fpi) для разных значений подводимой тепловой мощности указаны в таблице E.1.

Пример 1

Нагрузочный коэффициент Fpi(20) для подводимой тепловой мощности Qрi = 20 % должен быть приравнен к Fpi(30 %), для Qрi = 30 % он составляет 0,3.

Пример 2

Нагрузочный коэффициент для Qрi = 40 % должен быть распределен между меньшей нагрузкой Qрi = 30 % и большей нагрузкой Qрi = 50 % в соответствии с формулами (15) и (16) по 4.6.2.2.3:

- большая нагрузка:

- меньшая нагрузка: Fpi(30 %) = Fpi(40 %) - Fpi(50 %) = 0,3 - 0,1875 = 0,1125.

Пример 3

Нагрузочный коэффициент для Qрi = 60 % должен быть распределен между меньшей нагрузкой Qрi = 50 % и большей нагрузкой Qрi = 100 % в соответствии с формулами (15) и (16) по 4.6.2.2.3:

- большая нагрузка:

- меньшая нагрузка: Fpi(50 %) = Fpi(60%) - Fpi(100 %) = 0,25 - 0,0833 = 0,1667.

Пример 4

Нагрузочный коэффициент для Qрi = 70 % должен быть распределен между меньшей нагрузкой Qрi = 50 % и большей нагрузкой Qрi= 100 % в соответствии с формулами (15) и (16) по 4.6.2.2.3:

- большая нагрузка:

- меньшая нагрузка: Fpi(50 %) = Fpi(70%) - Fpi(100 %) = 0,15 - 0,0857 = 0,0643.

Пример 5

Нагрузочные коэффициенты для полного диапазона нагрузок котла указаны в таблице Е.2.

Таблица Е.2

Нагрузка котла, %

Подводимая тепловая мощность, %

Итоговый Fpi

20

40

60

70

30

30

0,1125



0,4125

50


0,1875

0,1667

0,0643

0,4185

100



0,0833

0,0857

0,1690

Итоговый Fpi

0,30

0,30

0,25

0,15

1

Концентрацию NОх, определяют по формуле (17) [см. 4.6.2.2.3]:

NOх = 0,4125 NОх (30 %) + 0,4185 NOх изм (50%) + 0,169 NOх изм (100%).

ПРИЛОЖЕНИЕ Ж

(справочное)

Соотношения между единицами концентрации NOx

Соотношения между единицами концентрации NОх, для газов различных семейств приведены в таблицах Ж.1 - Ж.3.

Таблица Ж.1 - Газы первого семейства

1 ppm = 2,054 мг/м3

(1 ppm = 1 см33)

G110

мг/(кВт·ч)

мг/МДж

О2=0 %

1 ppm =

1,714

0,476

1 мг/м3 =

0,834

0,232

О2=3%

1 ppm =

2,000

0,556

1 мг/м3 ==

0,974

0,270

Таблица Ж.2 - Газы второго семейства

1 ppm = 2,054 мг/м3

(1 ppm - 1 см33)

G20

G25

мг/(кВт·ч)

мг/МДж

мг/(кВт·ч)

мг/МДж

О2=0%

1 ppm =

1,764

0,490

1,797

0,499

1 мг/м3 =

0,859

0,239

0,875

0,243

О2=3%

1 ppm =

2,059

0,572

2,098

0,583

1 мг/м3 =

1,002

0,278

1,021

0,284

Таблица Ж.3- Газы третьего семейства

1 ppm = 2,054 мг/м3

(1 ppm - 1 см33)

G30

G31

мг/(кВт·ч)

мг/МДж

мг/(кВт·ч)

мг/МДж

О2=0%

1 ppm =

1,792

0,498

1,778

0,494

1 мг/м3 =

0,872

0,242

0,866

0,240

О2=3%

1 ppm =

2,091

0,581

2,075

0,576

1 мг/м3 =

1,018

0,283

1,010

0,281

ПРИЛОЖЕНИЕ И

(рекомендуемое)

Схемы испытаний

1 - трехходовой кран; 2 - охладитель; 3 - компенсационный бак; 4 - циркуляционный насос; 5 - клапан управления I; 6, 12, 14 - термометры; 7 - бак постоянного уровня; 8 - клапан управления III; 9 - подсоединение к распределительной трубе постоянного давления; 10 - водомер; 11 - клапан управления II; 13 - испытуемый котел; 15 - сосуд для взвешивания

Рисунок И. 1 - Испытательный стенд с прямой рециркуляцией

1 - сосуд для взвешивания; 2 - трехходовой кран; 3, 6, 14, 16 - термометры; 4 - расширительный сосуд (вне системы циркуляции); 5 - теплообменник; 7 - клапан управления II; 8 - бак постоянного уровня; 9 - клапан управления III; 10 - водомер; 11 - подсоединение к распределительной трубе постоянного давления; 12 - циркуляционный насос; 13 - клапан управления I; 15 - испытуемый котел

Рисунок И.2 - Испытательный стенд с теплообменником

1 - термопара

Рисунок И.3 - Устройство для отбора проб и измерения температуры продуктов сгорания для дымохода диаметром более 100 мм

1 - медная трубка Æ 6 мм; 2 - медная трубка Æ 4 мм; 3 - термопара

Рисунок И.4 - Устройство для отбора проб и измерения температуры продуктов сгорания для дымохода диаметром, не превышающим 100 мм

А и В - перегородки для получения восходящей и обратной тяги; С - вентилятор; D- гибкий участок; Е - трубка Пито для измерения скорости потока

Рисунок И.5 - Испытание котла при особых условиях тяги

1 - сжатый воздух; 2 - градуированная шкала; 3 - измерительный сосуд