Светофоры типа 3 устанавливаются в начале полосы (над ней) и повторяются таким образом, чтобы расстояние между этими светофорами обеспечивало видимость водителями транспортных средств сигналов не менее двух последовательно расположенных светофоров.

Регулирование въездов осуществляется с помощью обычных трехсекционных светофоров типа I, которые в случае однополосного въезда устанавливаются на правой стороне въезда. Если въезд осуществляется по двум полосам одновременно, то один светофор устанавливается на колонке у правой полосы, а второй (дублирующий) подвешивается над левой полосой. В случае, когда на двухполосном въезде каждая полоса работает самостоятельно, то светофоры размещаются над каждой полосой.

3.6. Организация движения по магистрали

3.6.1. В соответствии с задачами организации движения на автомобильной магистрали транспортный поток дифференцируется по скоростям движения, что позволяет наиболее полно использовать динамические качества автомобилей и создает для водителя возможность двигаться в наиболее удобном для него режиме. Наличие многополосной проезжей части позволяет выделить для групп автомобилей, движущихся с различными скоростями, самостоятельные полосы движения, что осуществляется с помощью линий разметки.

Величина скорости, рекомендуемая для автомобилей на каждой полосе, определяется в системе по алгоритмам, изложенным ниже, в зависимости от условий движения по магистрали (погодные условия, загрузка магистрали, наличие ДТП и заторов) и доводится до сведения водителей путем размещения над каждой полосой знаков, которые повторяются по всему протяжению магистрали через некоторое расстояние. Оптимальная его величина была определена экспериментально, путем наблюдения за движением автомобилей по участкам дороги, на которых производилось управление скоростью по каждой полосе движения (см. приложение 1). Было получено, что независимо от полосы и величины скорости оптимальным расстоянием повторения знаков является 1,5 - 2,0 км, так как при большем расстоянии водители не соблюдают ограничений скорости (см. рис. 4, прилож. 1).

3.6.2. В случае воздействия неблагоприятных погодных условий, заторов или ДТП возникает задача снижения скорости движения либо закрытия отдельного участка магистрали. При этом целесообразно такое снижение скорости производить постепенно по отдельным тактам с таким расчетом, чтобы оно осуществлялось плавно и не было бы двух соседних участков магистрали с высокой разницей скоростей движения (рис. 2).

Рис. 2. Потактное снижение скорости по полосам магистрали

Закрытие движения по отдельным участкам полос осуществляется с помощью светофоров. Для этого необходимо, чтобы над каждой полосой в местах размещения знаков, регламентирующих скорость движения, были и светофоры.

3.6.3. Организация движения на въездах на автомагистраль может быть осуществлена различными способами в зависимости от интенсивности движения, возможностей получения оперативных данных об изменении характеристик транспортного потока и желаемой степени автоматизации управления въездом.

В самых простых случаях в часы «пик» въезд может быть закрыт на некоторое время. Этот метод применяется обычно, когда поток, движущийся по магистрали, равен ее пропускной способности и лишняя доза транспорта, въезжающего на магистраль, может привести к затору.

В случаях, когда поток на магистрали достаточно высокий, но он еще не приближается к величине пропускной способности, может применяться дозированный впуск по жесткой программе. Программы могут меняться во времени, но суммарный поток на магистрали и въезде не должен превышать ее пропускную способность.

В случаях, когда с помощью детекторов собирается информация о характеристиках транспортного потока на магистрали перед въездом, могут быть использованы различные методы организации движения, реагирующие на случайное изменение этих характеристик. К ним, в частности, относятся:

метод анализа спроса и пропускной способности, при котором автомобилям по одному разрешается въезд на магистраль в моменты, когда спрос не превышает пропускной способности магистрали;

метод контроля занятости участка магистрали перед въездом, когда для различного уровня занятости подсчитывается возможная доза впуска на магистраль;

метод замера интенсивности движения на крайней полосе, при котором количество впускаемых автомобилей на магистраль за единицу времени зависит от интенсивности на крайней (правой) полосе;

метод поиска приемлемого интервала, когда автомобилям разрешается въезд на магистраль в интервалы между автомобилями на правой полосе;

метод поиска приемлемого интервала со световой индикацией, при котором вдоль въезда устанавливается световая индикация, показывающая величину приемлемого интервала и скорость его движения. Этот метод обычно применяется, когда видимость на въезде неудовлетворительна, либо его геометрические характеристики отличаются от обычных.

Самым прогрессивным методом является координированный впуск, зависящий от параметров транспортного потока на всей магистрали, когда анализируются состояния движения на всех участках магистрали и въездах и с помощью ЭВМ принимаются решения о допустимых потоках на любом въезде, исходя из условий обеспечения минимальных задержек транспорта, максимальной пропускной способности либо другого выбранного критерия.

Организация регулируемого движения автомобилей на въездах требует оборудования их светофорами и детекторами транспорта.

3.6.4. При высокой загрузке первой (крайней) полосы движения может возникнуть задача обеспечения входа на эту полосу автомобилей, въезжающих на магистраль. С этой целью может быть использована техника искусственного создания разрывов в потоке на первой полосе. Она заключается в том, что с помощью снижения скорости движения на этой полосе можно добиться того, что часть автомобилей с этой полосы уйдут на соседнюю полосу движения и тем самым на ней появятся интервалы, приемлемые для въезда на нее.

3.7. Организация обходных маршрутов

Несмотря на высокие технико-эксплуатационные характеристики автомобильных магистралей на них не исключены дорожно-транспортные происшествия. При этом, как показывает практика, вследствие высоких скоростей движения эти ДТП имеют цепной характер, т.е. в них могут участвовать несколько автомобилей, следующих один за другим. Возникновение таких ДТП может вызвать полное или частичное блокирование проезжей части и тем самым явиться причиной серьезных заторов. Причиной заторов может быть также чрезмерная загрузка магистрали в случае, когда не применяется ограничение потока на въездах.

Организация маршрута, обходящего участок с затором, помогает избежать роста затора из-за прибывающих автомобилей и тем самым снизить их задержки. Естественно, что организация обходных маршрутов возможна лишь при условии наличия параллельных дорог и сети дорог, соединяющих их с магистралью.

Возможны два варианта организации обходных маршрутов. При одном из них автомобили минуют закрытый участок магистрали по дороге, проходящей справа по направлению движения, а при другом - по дороге, проходящей слева. Принципиальная разница этих вариантов заключается в том, что при первом варианте автомобили, идущие по обходу, выполняют левые повороты на дороге параллельной магистрали, а при втором - на самой магистрали по развязкам. Это важное обстоятельство должно учитываться, так как первый вариант не всегда может быть приемлем.

При организации обходных маршрутов приходится решать две основные задачи: направление потока на съезд и информация водителей о направлении движения по обходному маршруту. Это выполняется с помощью управляемых знаков и светофоров. Первая задача решается путем постепенного снижения скорости движения по полосам и их выравнивания, а затем постепенного закрытия основных полос движения, начиная с левой полосы (рис. 3).

Рис. 3. Направление потока на съезд при организации обходного маршрута

Вторая - путем установки предварительных указателей направлений движения на всех пересечениях, где обходной маршрут меняет свое направление (рис. 4 и 5).

Рис. 4. Пример расстановки управляемых дорожных знаков на обходном маршруте для направления движения из пункта А в пункт Б

Рис. 5. Управляемые дорожные знаки, используемые для организации обходных маршрутов при закрытии участка магистрали:

а - знаки, устанавливаемые в начале переходно-скоростной полосы; б - знаки, устанавливаемые за 1000 и 500 м до съезда

4. ОСНОВНЫЕ ПОЛОЖЕНИЯ СТРАТЕГИИ УПРАВЛЕНИЯ ТРАНСПОРТНЫМИ ПОТОКАМИ В СИСТЕМЕ АРДАМ

4.1. Объемлющий алгоритм управления

4.1.1. Алгоритм управления транспортными потоками в системе АРДАМ построен по результатам разработок Гипродорнии и СКБ Промавтоматики, с учетом зарубежного опыта в данной области и отечественного в области городских систем управления движением. Его блок-схема приведена на рис. 6. Блоки, соответствующие объекту управления - транспортному потоку и трем основным генераторам входных переменных - транспортной ситуации на примыкающей сети, дорожным условиям на магистрали и окружающей среде, введены в целях наглядности.

4.1.2. Движение транспортного потока на автомобильной магистрали рассматривается как система обслуживания в том смысле, что в нем выделяются два взаимосвязанных, но различных элемента:

спрос на обслуживание, т.е. на пользование магистралью, который создается потоками в граничных створах магистрали, а также потоками въездов и съездов;

процесс обслуживания, обеспечиваемый аппаратом обслуживания и наделенный определенной дисциплиной обслуживания, т.е. процесс функционирования объекта управления, параметрами которого являются фазовые переменные транспортного потока (плотности, средние пространственные скорости по полосам и участкам магистрали и длины очередей на въездах).

Аппаратом обслуживания является при этом автомобильная магистраль как инженерное сооружение, параметры которой, изменяющиеся под воздействием окружающей среды, также являются управляемыми.

Под дисциплиной обслуживания понимается порядок удовлетворения спроса на пользование магистралью, который устанавливается действующей в системе АРДАМ стратегией управления и реализуется через объемлющий алгоритм управления.

4.1.3. Алгоритм состоит из контура автоматического управления и контура, замкнутого на человека-оператора.

Рис. 6. Блок-схема алгоритма управления

В контуре ручного управления по предложению канд. техн. наук Васильева А.П. предусмотрен блок управления состоянием автомобильной магистрали (блок II). Для его реализации предполагается, что в рамках системы АРДАМ дорожные службы, прикрепленные к управляемому участку магистрали, находятся в оперативном подчинении оператора системы. Все другие блоки относятся исключительно к управлению транспортным потоком.

4.1.4. Контур автоматического управления имеет сложную многоуровневую структуру. Принципиальным моментом является принятие двухуровневой схемы реализации управления:

уровень А - управляющие программы, т.е. координированные наборы управляющих воздействий на скорости движения по автомагистрали и работу въездов, являющиеся оптимальными по заданному критерию и рассчитанные вне реального масштаба времени для существенно различных ситуаций по спросу на пользование магистралью и (или) условиям окружающей среды;

уровень В - рассчитываемые в реальном масштабе времени корректирующие управления. На этом уровне осуществляются реакции управляющего алгоритма на рассогласования фактических и номинальных для программы уровня А параметров транспортного потока.

4.1.5. Различаются четыре уровня локализации управления как по масштабам координации управляющих воздействий, так и по объему релевантной информации:

уровень локального управления «0» относится к управляющим воздействиям, рассчитанным для рассматриваемых изолированно въездов и полос движения в пределах элементарного участка;

уровень локального управления «1» предполагает координацию управлений в пределах элементарного участка;

уровень координированного управления «2» предполагает управление системой последовательно расположенных въездов и координированное задание скоростей в пределах определенного участка магистрали (например, для всего участка МКАД-Истра);

уровень координированного управления «3» включает возможность перераспределения потоков на примыкающей сети; в частности, сброс транспортного потока с управляемого участка, формирование альтернативных маршрутов следования и т.д.

4.1.6. К блоку 1 отнесены алгоритмы первичной обработки информации о параметрах объекта управления, которые обрабатывают ежесекундно поступающую информацию с детекторов интенсивности, времени присутствия, скорости, состава движения и формируют соответствующие массивы исходных данных. Эти алгоритмы разработаны в СКБ Промавтоматика.

4.1.7. Алгоритмы блока 2, осуществляющие обнаружение заторов и дорожно-транспортных происшествий (разработаны в СКБ Промавтоматика), основаны на модели распространения ударных волн в плотном транспортном потоке. Блок замкнут на оператора. Тем самым предполагается наличие экстренных ситуаций, реакция на которые в контуре ручного управления опережает реакцию контура автоматического управления, где та же информация пройдет по каналу

Б1→Б14→Б7→Б8, Б9 или

Б1→Б4→Б13→Б8

4.1.8. С учетом необходимости реагирования на изменения условий окружающей среды (ОС), дорожных условий, а также возможности непосредственного выхода на исполнительные блоки контур, замкнутый на оператора, выглядит следующим образом:

ТП→Б1→Б2→Б3→Б8, Б9, Б11

ОС→Б6

Организация блока 3 выполнена в виде человеко-машинной процедуры, которая обеспечивается как набором инструкций непосредственного пользования, так и алгоритмами, обеспечивающими диалог оператора и ЭВМ. Контур ручного управления описан в п.4.2.