Значения b1 следует определять в зависимости от ??max (с низовой стороны) по черт. 2. При эксцентриситете еp нормальной силы Р в сторону нижнего бьефа в формуле (13) вместо b, b1 и b2 следует принимать b¢, b1 и b2 (где b = b - 2еp, а ); эксцентриситет в сторону верхнего бьефа в расчетах не учитывается.

Для портовых сооружений и сооружений на континентальном шельфе расчеты устойчивости по схеме смешанного сдвига допускается не производить.

(Измененная редакция. Изм. № 1).

Черт. 2. Графики для определения ширины участка подошвы сооружения b1, на котором происходит сдвиг с выпором грунта основания

а - для грунтов с коэффициентом сдвига tg > 0,45; б - то же, при tgI < 0,45;  - среднее нормальное напряжение в подошве сооружений, при котором происходит разрушение основания от одной вертикальной нагрузки ( определяется по рекомендуемому приложению 5; )

3.10. При смешанном сдвиге с поворотом в плане предельная сдвигающая сила принимается равной , где  - коэффициент, определяемый по указаниям рекомендуемого приложения 6,  - то же, что в формуле (13).

3.11. Расчет устойчивости сооружений по схеме глубинного сдвига следует производить:

а) для всех типов сооружений, несущих только вертикальную нагрузку, а для портовых сооружений - независимо от характера нагрузки;

б) при невыполнении требований п. 3.5 для сооружений, несущих вертикальную и горизонтальную нагрузки и расположенных на неоднородных основаниях.

3.12. Расчет устойчивости гравитационных сооружений (кроме портовых) по схеме глубинного сдвига допускается производить по рекомендуемому приложению 7.

Расчет устойчивости портовых сооружений, как правило, следует производить двумя методами, исходя из поступательного перемещения сдвигаемого массива грунта вместе с сооружением по ломаным плоскостям сдвига и из вращательного их перемещения по круглоцилиндрической поверхности сдвига в соответствии с рекомендуемым приложением 8, а при специальном обосновании - одним из указанных методов.

При использовании обоих методов определяющими являются результаты расчета устойчивости по тому методу, по которому условие (3) показывает меньшую надежность сооружения.

3.13. При расчете устойчивости сооружений на основаниях, сложенных глинистыми грунтами со степенью влажности Sr ³ 0,85 и коэффициентом степени консолидации cv0 ?? 4 следует учитывать нестабилизированное состояние грунта основания одним из способов:

- принимая характеристики прочности tg ??1 и с1, соответствующие степени консолидации грунта основания к расчетному моменту (т.е. полным напряжениям), или su,I, и не учитывая при этом в расчетах наличие избыточного порового давления, обусловленного консолидацией грунта;

- учитывая по поверхности сдвига действие избыточного порового давления, возникающего при консолидации грунта (определяемого экспериментальным или расчетным путем), и принимая характеристики прочности tg ??1 и с1, соответствующие полностью консолидированному состоянию грунта (т.е. эффективным напряжениям).

При расчете устойчивости сооружений на водонасыщенных нескальных основаниях, воспринимающих кроме статических также динамические нагрузки, следует учитывать влияние этих нагрузок на несущую способность грунтов, приводящее к снижению сопротивления недренированному сдвигу связных грунтов и возникновению избыточного порового давления в несвязных грунтах.

(Измененная редакция. Изм. № 1).

РАСЧЕТ УСТОЙЧИВОСТИ СООРУЖЕНИЙ НА СКАЛЬНЫХ ОСНОВАНИЯХ

3.14. Расчеты устойчивости сооружений на скальных основаниях, скальных откосов и склонов следует выполнять по схеме сдвига по плоским или ломаным расчетным поверхностям. При этом определяющими являются результаты расчета по той схеме, которая по условию (3) показывает меньшую надежность сооружения (откоса, склона).

(Измененная редакция. Изм. № 1).

При плоской расчетной поверхности сдвига следует учитывать две возможные схемы нарушения устойчивости:

поступательный сдвиг;

сдвиг с поворотом в плане.

При ломаной расчетной поверхности сдвига следует учитывать три возможные расчетные схемы:

сдвиг вдоль ребер ломаной поверхности (продольный);

сдвиг поперек ребер ломаной поверхности (поперечный);

сдвиг под углом к ребрам ломаной поверхности сдвига (косой).

Выбор схемы нарушения устойчивости сооружения или откоса (склона) и определение расчетных поверхностей сдвига следует производить, используя данные анализа инженерно-геологических структурных моделей, отражающих основные элементы трещиноватости скального массива (ориентировку, протяженность, мощность, шероховатость трещин, их частоту и т.д.) и наличие ослабленных прослоек и областей.

3.15. При расчете устойчивости сооружений и скальных откосов (склонов) по схеме поступательного и продольного сдвигов величины, входящие в условие (3), необходимо определять по формулам:

;                                                                        (14)

,                                    (15)

где F, R - то же, что в формуле (3);

Т - активная сдвигающая сила (проекция равнодействующей расчетной нагрузки на направление сдвига);

Pi - равнодействующая нормальных напряжений (сил), возникающих на i-м участке поверхности сдвига от расчетных нагрузок;

Rg -  сила сопротивления, ориентированная против направления сдвига, возникающая от анкерных усилий и т.д.;

п - число участков поверхности сдвига, назначаемое с учетом неоднородности основания по прочностным и деформационным свойствам;

, - расчетные значения характеристик скальных грунтов для i-го участка расчетной поверхности сдвига, определяемые в соответствии с требованиями п. 2.16;

Ai - площадь i-го участка расчетной поверхности сдвига;

Ei - расчетная сила сопротивления упорного массива (обратной засыпки), определяемая по указаниям п. 3.16.

3.16. Расчетное значение силы сопротивления упорного массива или обратных засыпок следует определять по формуле

,                                                              (16)

где  - расчетное значение силы пассивного сопротивления.

Для обратных засыпок и упорных массивов без выраженных поверхностей ослабления  определяется по указаниям СНиП 2.06.07-87. Для упорного массива, содержащего поверхности ослабления, по которым данный массив может быть сдвинут, значение  следует определять без учета характеристик tg и с по упорной грани по формуле

                                  (17)

где Q - вес призмы выпора;

А - площадь поверхности сдвига призмы выпора;

 - угол наклона поверхности сдвига (плоскости ослабления) призмы выпора к горизонту;

, - расчетные значения характеристик грунтов по поверхности сдвига (выпора);

 - коэффициент условий работы, принимаемый в зависимости от соотношения модулей деформации грунта упорного массива (обратной засыпки) Еs и основания Ef :

при 0,8  = 0,7;

при 0,1  = ;

при 0,8 >> 0,1 определяется линейной интерполяцией;

Еr - давление покоя, определяемое по формуле

,                                                                                                             (18)

где  - удельный вес грунта упорного массива;

v - коэффициент поперечной деформации грунта упорного массива;

h - высота упора на контакте с сооружением или откосом.

Примечания: 1. Сопротивление упорного массива следует учитывать только в случае обеспечения плотного контакта сооружения или откоса с упорным массивом.

2. Сила Еp,d принимается горизонтальной независимо от наклона упорной грани массива.

3.17. При расчете устойчивости сооружений и скальных откосов (склонов) по схеме сдвига с поворотом в плане следует учитывать возможное уменьшение сопротивления сдвигу R против значений сил, устанавливаемых в предположении поступательного движения. При этом корректировку значений R допускается производить в соответствии с требованиями рекомендуемого приложения 6.

3.18. Расчеты устойчивости сооружений и скальных откосов (склонов) по схеме поперечного сдвига следует производить, как правило, расчленяя призму обрушения (сдвига) на взаимодействующие элементы.

Расчленение призмы обрушения (сдвига) на элементы производится в соответствии с характером поверхности сдвига, структурой скального массива призмы и распределением действующих на нее сил. В пределах каждого элемента по поверхности сдвига характеристики прочности скального грунта принимаются постоянными.

Выбор направлений расчленения призмы обрушения на элементы и расчетного метода следует производить с учетом геологического строения массива. При наличии пересекающих призму обрушения (сдвига) поверхностей ослабления, по которым возможно достижение предельного равновесия призмы, плоскости раздела между элементами следует располагать по этим поверхностям ослабления.

3.19. Расчеты устойчивости по схеме косого сдвига следует выполнять в тех случаях, когда направление смещения массива не совпадает с направлением ребра (ребер) пересечения плоскостей сдвига, например, при расчетах устойчивости береговых упоров арочных плотин и подобных массивов.

3.20. (Исключен. Изм. № 1).

3.21. Для оценки устойчивости сооружений на скальных основаниях и скальных откосов, относимых к I классу, при сложных инженерно-геологических условиях в дополнение к расчету, как правило, следует проводить исследования на моделях.

4. ФИЛЬТРАЦИОННЫЕ РАСЧЕТЫ ОСНОВАНИЙ

4.1. При проектировании основания гидротехнического сооружения необходимо обеспечивать фильтрационную прочность грунтов основания, устанавливать допустимые по технико-экономическим показателям фильтрационные расходы и противодавление фильтрующейся воды на подошву сооружения. При этом также надлежит определять:

форму свободной поверхности фильтрационного потока (депрессионной поверхности) и местоположения участков его высачивания;

распределение напора фильтрационного потока главным образом вдоль подземного контура сооружения, на участках его разгрузки и в местах сопряжения грунтов, отличающихся фильтрационными свойствами и структурой порового пространства;

фильтрационный расход на характерных участках основания;

силовое воздействие фильтрационного потока на массив грунта основания;

общую и местную фильтрационную прочность грунтов в основании, причем общую фильтрационную прочность следует оценивать лишь для нескальных грунтов основания, а местную - для всех классов грунтов.

Примечание. При выполнении фильтрационных расчетов основания необходимо учитывать дополнительное обводнение верхних мелкозернистых слоев грунтовой толщи (выше поверхности депрессии) за счет капиллярного поднятия воды (образования «капиллярной каймы»).

(Измененная редакция. Изм. № 1).

4.2. Характеристики фильтрационного потока следует определять путем его моделирования на физических или математических фильтрационных моделях основания с использованием, как правило, моделей (схем) основания, отражающих геологическую структуру грунтового массива выделением наиболее характерных по водопроницаемости и суффозионной устойчивости грунтов областей, которые попадают в активную область фильтрационного потока. Границы этих областей следует определять предварительными расчетами, исходя из намеченных размеров и конфигурации подземного контура сооружения.

4.3. Критерием обеспечения общей фильтрационной прочности нескального основания является условие

,                                                       (20)

где  - расчетное значение осредненного критического градиента напора, принимаемое по п. 2.12;

 - коэффициент надежности по степени ответственности сооружения, принимаемый по п. 3.1.

Значение  для оснований сооружений I и II классов следует определять по методу удлиненной контурной линии. В отдельных случаях значения  допускается определять и другими приближенными методами.

4.4. Местную фильтрационную прочность нескального основания необходимо определять только в следующих областях основания:

в области выхода (разгрузки) фильтрационного потока из толщи основания в нижний бьеф, дренажное устройство и т. п.,

в прослойках суффозионно-неустойчивых грунтов;

в местах с большим падением напора фильтрационного потока, например, при обтекании подземных преград;

на участках контакта грунтов с существенно разными фильтрационными свойствами и структурой.

Критерием обеспечения местной фильтрационной прочности нескального основания является условие

,                                                               (21)

где  -   местный градиент напора в рассматриваемой области основания, определяемый методами, указанными в. п. 4.2;

 - местный критический градиент напора, определяемый по п. 2.12.

4.5. Критериями обеспечения местной фильтрационной прочности скальных оснований являются условие (21), в котором  заменяется на  и условие

,                                                    (22)

где  - средняя скорость движения воды в трещинах массива основания;

 -   скорость фильтрации воды в массиве в направлении простирания выделенной системы трещин;

nj - расчетная пустотность массива, определяемая наличием в нем полых трещин той же системы при доверительной вероятности их раскрытия 0,95;

 - критическая скорость движения воды в трещинах, определяемая по п. 2.20;

 - критический градиент напора в направлении простирания рассматриваемой системы трещин, определяемый по п. 2.20.

4.6. Проектирование подземного контура напорных сооружений должно выполняться в соответствии с требованиями СНиП 2.06.05-84 *и СНиП 2.06.06-85. При выборе системы дренажа и противофильтрационных устройств в основании проектируемого сооружения необходимо также учитывать условия его эксплуатации, инженерно-геологические условия и требования по охране окружающей среды в части подтопления, заболачивания прилегающей территории, активизации карстово-суффозионных процессов и т. п.