βi - коэффициент динамичности, соответствующий i-му тону собственных колебаний, принимаемый по рис.3.

Примечания: 1. Вычисляемая по формуле (4) сейсмическая нагрузка .в зависимости от типа к-й степени свободы представляет собой: сейсмическую силу - при смещении V, и сейсмический момент - при угле поворота φ.

2. Формулы для определения сейсмических сил и сейсмических моментов, периодов и форм собственных колебаний приведены в рекомендуемом приложении 3.

5.2. Для причальных сооружений эстакадного типа коэффициенты формы следует определять по формуле

,                                                      (5)

где xki - относительное обобщённое перемещение сооружения в направлении k-й степени свободы (смещение V или угол поворота φ) при его собственных колебаниях по i-му тону;

r - текущий номер степени свободы динамической расчётной схемы;

ns - число степеней свободы, совпадающих с направлением сейсмического воздействия (число степеней свободы, характеризующих перемещения);

n - общее число степеней свободы динамической расчётной схемы, включая и перемещения, и углы поворота.

Рис. 3. Коэффициент динамичности β для грунтов I, II, III категории

5.3. Перемещение узла динамической расчётной схемы в направлении k-й степени свободы, обусловленное действием сейсмических нагрузок, вычисленных по формуле (4), определятся по формуле

,                                                              (6)

где i - круговая частота собственных колебаний сооружения, соответствующая i-му тону, с-1.

5.4. Для секции причала, у которой плита представлена жёстким диском, усилия, возникающие в р-й свае от действия сейсмических нагрузок, определяются по формулам

,                                        (7)

где Vi и φi - смещение центра масс секции и угол её поворота, вычисленные по формуле (6), м и рад.

5.5. Для цепочки жёстких секций, соединённых между собой связями, препятствующими относительному смещению соединяемых концов секций в поперечном направлении, усилия в связях необходимо определять при сейсмическом воздействии, перпендикулярном продольной оси сооружения, по формуле

                                     (8)

где ak, bk - расстояния от центра масс k-й секции до её правого и левого концов соответственно, м;

Ck,k+1 - коэффициент жёсткости связи, соединяющей k-ю и (k + 1)-ю секции, кН/м.

5.6. Результирующие усилия в элементах конструкции либо перемещения узлов при учёте ν формы колебаний следует определять по формуле

,                                                                  (9)

где Ni - значение внутреннего усилия или обобщённого перемещения в рассматриваемом сечении или узле от действия сейсмической нагрузки Ski, соответствующий i- му тону колебаний.

Примечание. Суммировать по формуле (9) следует величины, используемые в основных формулах расчёта конструкции по первому и второму предельным состояниям.

5.7. Ширину антисейсмического шва, исключающего соударение соседних секций при сейсмических колебаниях, необходимо определять при сейсмическом воздействии, совпадающем с направлением продольной оси сооружения, по формуле

,                                                   (10)

где Uk - амплитуда перемещения k-й секции при сейсмических колебаниях в направлении соседней (k+1) секции, мм;

Δt - зазор, требуемый для свободного температурного расширения соседних секций, мм.

Амплитуду колебаний Uk допускается определять по формуле

,                                                          (11)

где ωk - частота собственных колебаний k-й секции, определяемая по формуле (12),

                                                            (12)

Примечание. Коэффициент kuu характеризует жёсткость свайного поля k-й секции при смещении плиты секции в направлении соседней (k+1)-й секции (на рис. 1.a в направлении оси y)

                                                        (13)

6. ОСНОВНЫЕ ТРЕБОВАНИЯ К КОНСТРУИРОВАНИЮ

6.1. Конструирование причальных сооружений эстакадного типа необходимо осуществлять с соблюдением требований главы СНиП II-51-74, главы СНиП II-7-81, ВСН 3-80 / Минморфлота, а также с учётом требований настоящего раздела.

6.2. Протяжённые сооружения следует разделять на отдельные секции антисейсмическими швами, которые целесообразно совмещать с температурно-осадочными швами.

Длину секций принимать в соответствии с указаниями ВСН 3-80 / Минморфлота.

Антисейсмические швы должны разделять секции по всей высоте. Ширину антисейсмических швов следует назначать по результатам расчёта и принимать не менее 40 мм.

Вертикальные антисейсмические швы в бортовых балках, плитах покрытий верхнего строения должны закрываться компенсаторами или нащельниками из оцинкованной стали, алюминия или пластмассы, не препятствующих взаимному перемещению.

Горизонтальные антисейсмические швы между секциями заполняются упругими прокладками, не препятствующими горизонтальным смещениям секций. В качестве прокладок следует применять ленты из пенопласта, пороизола, губчатой резины и других упругих материалов.

Конструкция перекрытия антисейсмических швов не должна препятствовать взаимным горизонтальным перемещениям секций во всех направлениях и должна исключать возможность возникновения случайных связей, не предусмотренных проектом.

Целесообразность соединения секций между собой специальными связями, препятствующими относительному сдвигу секций в направлении, перпендикулярном продольной оси сооружения, устанавливается по результатам расчёта на основное сочетание нагрузок с учётом сил навала судов и на особое сочетание нагрузок с учётом сейсмических сил. При этом конструкция связей должна исключать возможность их хрупкого разрушения при сейсмических колебаниях.

Рекомендуемая конструкция связей между секциями показана на рис.4.

6.3. Сборные железобетонные плиты верхнего строения каждой секции должны быть надёжно замоноличены. Стыкование сборных железобетонных плит следует выполнять в соответствии с указаниями Руководства по проектированию морских причальных сооружений РД 31.31.27-81.

В том случае, когда в продольных рёбрах плит не предусмотрены выпуски арматуры, в конструкции стыков замоноличивания должны быть устроены шпонки по продольным рёбрам. Зазоры между продольными рёбрами плит должны непрерывно армироваться каркасами с последующим их заполнением монолитным бетоном (рис.5).

6.4. В качестве опор сооружений эстакадного типа необходимо применять сваи в виде стальных труб либо предварительно напряжённых центрифугированных железобетонных оболочек. Применение в качестве опор призматических железобетонных свай для района строительства с сейсмичностью 7, 8 и 9 баллов не допускается.

При проектировании предварительно напряжённых железобетонных свай-оболочек и ригелей необходимо, чтобы предельный изгибающий момент из условия, прочности превышал не менее чем на 25% изгибающий момент из условия трещиностойкости.

6.5. Сваи необходимо погружать до глубин залегания плотных, устойчивых к сотрясениям грунтов. Опирание нижних концов свай на рыхлые водонасыщенные грунты, глинистые грунты мягко-пластичной, текучепластичной и текучей консистенции не допускается.

6.6. Верхние концы свай должны быть жёстко заделаны в ригель при ригельной конструкции верхнего строения и в плиту при плитной конструкции.

Для придания большей жёсткости замоноличенным стыкам ригелей со сваями необходимо применять безусадочный цемент, предусматривать мероприятия, препятствующие усадке бетона замоноличивания.

Рис. 4. Конструкция связи между секциями причала:

1 - плоский стержень; 2 - труба; 3 - бетон омоноличевания; 4 - анкерующая арматура; 5 - сборный ригель

Pиc. 5. Конструкция стыка замоноличивания между продольными ребрами сборных плит покрытия причала:

1 - полки плит покрытия; 2 - цементно-бетонное покрытие; 3 - бетон марки М400 на мелком заполнителе; 4 - каркас; 5 - шпонка

Узлы соединения железобетонных ригелей с железобетонными сваями-оболочками должны быть усилены применением сборных сеток, спиралей или замкнутых хомутов с учётом знакопеременных нагрузок, на расстоянии, равном полуторной высоте сечения.

При проектировании рам следует предусматривать такое соотношение несущих способностей сваи и ригелей, при котором зоны пластичности возникают в первую очередь в ригелях.

6.7. Горизонтальную жёсткость сооружений при необходимости следует обеспечивать применением наклонных свай либо введением в рамы диагональных связей, которые должны быть установлены в крайние по длине секции свайные ряды. Головы наклонных и вертикальных свай следует жёстко соединять между собой.

6.8. В конструкциях причальных сооружений следует предусматривать мероприятия, способствующие снижению возникающих при землетрясении сейсмических сил, включающие постановку пластических поглотителей энергии колебаний (энергопоглотителей), гасителей колебаний или сейсмоизоляцию плиты верхнего строения.

При проектировании конструкций энергопоглотителей следует:

а) отдавать предпочтение энергопоглотителям кольцевого или экструзионного типов;

б) энергопоглотители вводить в диагональные связи, устанавливаемые в рамах, образованные сваями и ригелями;

в) размеры сечений энергопоглотителей подбирать из расчёта, чтобы при возникновении в них пластических шарниров, напряжения в диагональных связях не превышали расчётных сопротивлений.

Рекомендуемые типы энергопоглотителя и схема его установки в сооружении показаны на рис.6.

При устройстве сейсмоизоляции верхнего строения необходимо исключить передачу на него судовых нагрузок.

Рис. 6. Варианты причальных сооружений:

а - с энергопоглотителями кольцевого типа;

б - с энергопоглотителями экструзионного типа

1 - верхнее строение; 2 - свайный фундамент; 3 - диагональные связи; 4 - ригель; 5 - энергопоглотитель кольцевого типа; 6 - прямоугольный стержневой контур с упругопластическими шарнирами (по авторскому свидетельству №. 1074985)

Рис. 7. Причальное сооружение эстакадного типа с сейсмоизоляцией (по авторскому свидетельству № 721503):

1 - верхнее строение; 2 - ограничители перемещений; 3 - ригель; 4 - сейсмоизоляторы; 5 - свайный фундамент; 6 - демфирующие пластины; 7 - козловые опоры

Рис. 8. Конструкции сейсмоизоляторов:

1 - верхнее строение; 2- ригель; 3 - балансир; 4 - резиновая опора; 5 - антифрикционные прокладки; ( по авторским свидетельствам №480796, 897961, 1021718); 6 - опорные плиты

Рекомендуемая конструкция причального сооружения с сейсмоизолированным верхним строением показана на рис. 7 и 8.

При выполнении отмеченных мероприятий оценку сейсмостойкости сооружений необходимо осуществлять путём расчёта на акселерограмму в соответствии с рекомендациями СНиП II-7-81.

Ответственный исполнитель,

рук. разработки, рук.НИОИИС,

канд. техн. наук                                                                                 Л.Ф.Штанько

Рук. группы стандартизации

и метрологии                                                                                     Г.И.Парфёнова

Исполнители:

Зав. сектором НИОИИС                                                                   Г.М.Кузнецова

Зав. сектором НИОИИС                                                                   С.И.Чернышов

Нормоконтролёр                                                                               С.И.Храпко

ПРИЛОЖЕНИЕ 1

(справочное)

ПРИМЕР РАСЧЁТА ОТДЕЛЬНОЙ СЕКЦИИ ПРИЧАЛА

1. УСЛОВИЯ ПРИМЕРА И ИСХОДНЫЕ ДАННЫЕ

Требуется определить сейсмические нагрузки, действующие на технологическую секцию нефтепирса (рис.1.1), строящегося в районе с сейсмичностью 8 баллов.

Размеры плиты верхнего строения секции в плане равны L  B=76  38 м. Глубина у причала равна 13 м.

Конструктивно верхнее строение секции выполнено в виде сборно-монолитной плиты коробчатого сечения общей высотой 2,7 м.

Плита расположена на 63-х железобетонных предварительно-напряжённых сваях-оболочках (рис.2) с наружным диаметром 1,6 м и толщиной стенки 0,15 м. Сваи погружены в суглинки с гравием и галькой на глубину 10 м. По классификации СНиП II-7-81 указанные грунты относятся к грунтам II категории.

Последовательность расчёта принимается в соответствии со справочным приложением 5.

2. ОПРЕДЕЛЕНИЕ ИНЕРЦИОННЫХ И жЁСТКОСТНЫХ ХАРАКТЕРИСТИК СЕКЦИИ

Масса плиты секции с учётом массы технологического оборудования (стендеров, операторской башни и т.д.), а также приведённых к плите массы свай и присоединённой к ним воды М = 10,24·103 т. Момент инерции массы секции θ = 56,9·105 т м2.

Центр массы секции расположен на расстоянии 0,6 м вправо от центра плиты (см. рис. 1.2).

Рис. 1.1 Схема нефтепирса

Рис. 1.2. План свайного поля технологической секции (размеры в метрах)

Коэффициенты жёсткости свай при смещении её голова (Срх, Сру) и при повороте Срφ в горизонтальной плоскости определяются по формулам

,      ,                                                (1.1)

где EJ, GJp - жёсткость сваи на изгиб и кручение соответственно;

l, lкр - расчётные длины свай при изгибе и кручении соответственно.

По результатам расчёта получено:

EJ = 76·105 кН·м2, GJp = 61·105 кН·м2, l = 17,9 м, lкр = 20,0 м.

Коэффициенты жёсткости свай равны

Срx=Сру=15,95·103 кН/м, Срφ=30,4·104 кН·м.

Коэффициенты жёсткости свайного поля, вычисленные по формулам (3) Рyкoвoдcтвa, равны

Kvv=106 кH/м, Kvφ= -12·105 кН, Кφφ=62·107 кН·м.

Конструктивный эксцентриситет по длине секции между центром мacc и центром жёсткости свайного поля равен

                                                 (1.2)

что составляет 1,6% от длины секции L.

В соответствии с п.1.1 рекомендуемого приложения 4 расчёты производятся с учётом случайного эксцентриситета .