9. ИНЖЕНЕРНАЯ ОЦЕНКА И КОНТРОЛЬ СОСТОЯНИЯ СИСТЕМЫ КРЕПЛЕНИЯ ТОННЕЛЬНЫХ ВЫРАБОТОК

9.1. При сооружении тоннеля с податливой крепью (анкерной, набрызг-бетонной, арочной и их комбинации) в грунтах, заметно проявляющих горное давление, безопасность работ необходимо обеспечивать помимо обоснованного назначения параметров крепи проведением инструментальных наблюдений с последующей оценкой состояния крепи.

9.2. Оценивать состояние системы крепления следует прежде всего по скорости прироста деформаций контура выработки, а также по абсолютной величине деформации (конвергенции). На основе этой оценки принимают решение о необходимости сооружения постоянной обделки или усиления временной крепи.

Дополнительно могут быть измерены усилия в элементах крепи, которые сопоставляются с предельными для принятия обоснованного решения.

9.3. Измерения конвергенции выработки должны сводится к определению осадок свода выработки нивелирования и сближения стен путем измерений с помощью рулетки. Точность измерения должна составлять не менее 0,5 см. В крепких малодеформированных грунтах точность измерений должна быть повышена: например, с помощью рулетки ЦНИИС и прецезионного нивелирования.

9.4. Частоту проведения измерений следует связывать со скоростью изменения измеряемого параметра. Чтобы зафиксировать начальные скорости изменения параметров, целесообразно сначала проводить частые измерения - от 1 раза в смену до 1 раза в сутки. Стабилизация параметров приводит к редким измерениям - до 1 раза в 1-3 месяца.

9.5. Расчетные величины скоростей деформаций контура выработки следует получать из решения задачи, в которой горный массив моделируется упругоползучей средой.

9.6. Расчетные величины абсолютных величин деформаций могут быть вычислены на основе решения задачи для упругопластического массива с выработкой. Как правило, такая задача решается методом конечных элементов.

9.7. Расчетные величины и скорости деформаций наиболее надежно определяются опытным путем, например, путем проходки опытной выработки.

9.8. Рекомендуемся такая последовательность действий для оценки и принятия решения по состоянию системы «крепь-грунт»:

определение параметров крепи;

построение теоретической кривой конвергенции (предварительной):

уточнение параметров крепи с учетом предварительной кривой конвергенции (проект);

уточнение физико-механических и реологических характеристик грунта на основе натурных наблюдений;

построение уточненной эталонной конвергенции;

корректировка конструктивных параметров крепи и технологических режимов ее установки с учетом уточненной кривой конвергенции;

проведение инструментальных наблюдений и определение параметров реальной кривой конвергенции;

определение усилий и деформаций в элементах крепи (по данным натурных наблюдений);

оценка состояния системы «крепь-грунт» путем сопоставления эталонной и реальной кривых конвергенции, а также предполагаемого и реального состояния элементов крепи;

принятие решения о необходимости дополнительного крепления.

9.9. Расчет кривых конвергенции (предварительной и уточненной) проводится методами механики сплошной среды с учетом взаимовлияющего характера деформирования крепи и окружающего выработку грунта. При этом в качестве расчетной модели окружающего грунта рекомендуется принять линейно деформированную среду, обладающую наследственной ползучестью. В этом случае выражение кривой конвергенции W = W(t) для выработки, подкрепленной комбинированной крепью из анкеров и набрызг-бетона, ориентировочно может быть получено из решения задачи об осесимметрическом деформировании упругой плоскости с круговым вырезом, подкрепленным кольцом, моделирующим набрызг-бетон, и системой стержней, моделирующих анкеры, по формуле

,

где             γ -    объемная масса грунта;

      H и R -    глубина заложения и средний радиус выработки;

; Sc -   площадь поперечного сечения выработки;

      Ен, Еα -    модули деформации набрызг-бетона и анкерного стержня;

       φ(zy) -    функция места установки крепи от забоя;

             h -    толщина покрытия из набрызг-бетона;

             α -    межанкерное расстояние;

            lα -    длина анкера;

           Fα -    площадь сечения анкерного стержня;

      -    деформационная характеристика грунта как функция времени вследствие ползучести.

9.10. Уточнение параметров грунта производится, например, с помощью замеров конвергенции (Wк = fк(t)) стен экспериментальной выработки радиуса Rк, величину которого выбирают из условия исключения пластических деформаций грунта.

Параметры грунта, связанные со временем, определяют по формуле

,

где  - мгновенные деформационные характеристики грунта.

9.11. С учетом определенных опытным путем характеристик грунта (см. п. 9.10) эталонную кривую конвергенции определяют выражением

.

9.12. Усиление крепи (корректировка ее конструктивных параметров) необходимо при условии, если в какой-либо момент времени

Wy(t) > Wпред,

где Wпред - предельное значение конвергенции, обеспечивающее прочность элементов крепи, определяют по формуле

Здесь Rисж - предел прочности набрызг-бетона на сжатие;

Rпр - несущая способность анкера.

При этом необходимо, чтобы после усиления Wy(t) ≤ Wпред, что позволяет параметры крепи определить из соотношения

.

10. УЧЕТ ВРЕМЕННОЙ КРЕПИ ПРИ РАСЧЕТЕ ТОННЕЛЬНОЙ ОБДЕЛКИ

10.1. Временная крепь, выбранная на основе рекомендаций гл. 2 и рассчитанная в соответствии с положениями настоящих Методических рекомендаций на наиболее неблагоприятное сочетание нагрузок, обеспечивает устойчивость грунта с выработкой в течение расчетного периода, т.е. до возведения обделки.

При этом возведение обделки в зависимости от условий строительства и принятой схемы организации работ можно осуществлять на различном удалении от забоя, в том числе после окончания проходческих работ.

10.2. При использовании набрызг-бетона, анкеров и металлических арок в качестве временной крепи, их рекомендуется учитывать при расчете обделки тоннеля как составную часть всей конструкции.

Вследствие малого опыта учета временной крепи при расчете постоянной обделки каждый такой случай требует специального теоретического и натурного исследования.

10.3. Обделки из набрызг-бетона и анкеров рекомендуется рассчитывать как многослойные конструкции, внешний слой которых - омоноличенная бетоном или анкерами породная зона (бетонопородный слой).

Круговые комбинированные обделки рекомендуется рассчитывать по программе «Расчет многослойных и комбинированных обделок» (см. приложение 1).

Толщину ho бетонопородного слоя, мм, следует определять на основании натурных измерений или ориентировочно из выражения

,

где B -   ширина трещин, мм;

KT - категория трещиноватости грунтов по классификации п. 2.3 настоящих Методических рекомендаций.

Толщина такого слоя может быть от 2 до 30 см.

Усредненный модуль упругости бетонопородного слоя E2 следует принимать

E2 = (0,5 - 0,7)Eo + (0,5 - 0,3) Eн,

где Eo -  модуль упругости породы;

Eн -  модуль упругости набрызг-бетона (см. п. 4.7).

10.4. Комбинированную обделку следует рассматривать как трехслойную, считая, что третий слой представляет собой усиленный анкерами грунт.

Модуль упругости такого слоя рекомендуется принимать E2 = 1,4Eo.

Такой подход к комбинированной обделке как к единой системе наиболее полно отражает физическую сущность работы набрызг-бетонных конструкций.

10.5. Прочность сцепления на контакте «обделка-грунт» необходимо проверить по следующему условию:

,

где f* = tgφк* -   коэффициент трения по контакту обделки и грунта, кгс/см2; φк* - угол трения по контакту, град.;

K* -    сцепление по контакту, тс/м2.

При невыполнении этого условия возможно проскальзывание покрытия по контакту, и обделка будет работать как обычное монолитное кольцо. В этом случае конструктивными мероприятиями (постановка анкеров, устройство уширений, «шпор» и т.д.) следует обеспечить совместную работу системы «обделка-грунт».

10.6. При прочной связи покрытия в грунте расчет набрызг-бетонной обделки следует производить как двухслойного кольца, а при наличии анкеров - трехслойного (рис. 10), используя общую методику расчета многослойной крепи.

10.7. Расчет двухслойной обделки производится как проверочный в соответствии с расчетной схемой (см. рис. 10), исходя из условия, что первый (внутренний) слой - набрызг-бетон, а второй - бетонопородный слой. Толщину внутреннего набрызг-бетонного слоя предварительно назначают, а затем проверяют расчетом.

10.8. При использовании в качестве временной крепи металлических арок в сильнотрещиноватых и слабых грунтах, когда демонтировать арки нельзя по условиям техники безопасности и устойчивости грунтового массива, их следует учитывать при расчете тоннельной обделки в качестве конструкции, принимающей на себя часть эксплуатационной нагрузки (приложение 10).

Рис. 10. Расчетные схемы набрызг-бетонных обделок:

а - двухслойное кольцо; б - трехслойное кольцо; 1 - покрытие из набрызг-бетона; 2 - бетонопородный слой; 3 - несущая породная конструкция, образованная анкерами

10.9. При расчетах обделки на заданные нагрузки от давления скальных грунтов (метод Метрогипротранса, «модель ЦНИИС» и др.) учет жесткого арочного крепления рекомендуется производить путем умножения ожидаемой величины горного давления на коэффициент Ko, значения которого даны в табл. 17.

Таблица 17

Степень трещиноватости грунта

Грунты

Слаботрещиноватые

Трещиноватые

Сильнотрещиноватые

Раздробленные

Коэффициент Ko

0,43

0,33

0,33

0,45

Величина Ko представляет собой разницу между нормируемыми для скальных грунтов коэффициентами перегрузки на обделку и временную крепь (см. п. 5.2), отражая тем самым восприятие арками части горного давления до возведения обделки.

10.10. При расчетах обделок с применением методов теории упругости арки временной крепи следует учитывать как жесткую арматуру.

10.11. При использовании податливой крепи в неустойчивых грунтах, склонных к ползучести (типа аргиллитов), следует выбирать параметры постоянной обделки с учетом смещений контура выработки и нагрузок на крепь в соответствующий возведению обделки момент времени.

Максимальные смещения и нагрузки на податливые и жесткие крепи вычисляют по программе «Штрек» (см. приложение 1), которая основана на экспериментально-аналитическом решении задачи определения горного давления методами теории пластичности.

10.12. Пример учета набрызг-бетонной крепи при расчете постоянной обделки приведен в приложении 11.

Приложение 1

СВЕДЕНИЯ ОБ АЛГОРИТМАХ И ПРОГРАММАХ РАСЧЕТА КРЕПИ ТОННЕЛЬНЫХ ВЫРАБОТОК

№ п/п

Название программы

Авторы алгоритма и программы

Язык программирования

Тип ЭВМ

Краткая характеристика

Организация-держатель программы

1

Расчет обделок некругового поперечного сечения

Н.Н. Фотиева

В.Л. Кипенев

А.А. Ланда

Фортран

ЕС

Определяется напряженное состояние монолитных тоннельных обделок некругового очертания. Расчет основан на решении плоской контактной задачи о равновесии кольца в упругой среде

Ленметрогипротранс

2

Расчет многослойных и комбинированных обделок кругового очертания

Н.С. Булычев

И.Е. Левин

А.А. Ланда

Фортран

ЕС

Проводится расчет сборной или монолитной трехслойной обделки кругового очертания методами теории упругости

-«-

3

Штрек

Б.З. Амусин

Фортран

ЕС

Определяются максимальные смещения и нагрузки на податливые и жесткие крепи, учитывается неоднородность массива и его вязкоупругие свойства. Крепь предполагается монолитной бетонной и железобетонной, замкнутой и незамкнутой

ВНИМИ

4

Крепь

Б.З. Амусин

Н.С. Булычев

Н.А. Романова

Фортран

ЕС

Проводится расчет обделки подземной выработки некругового очертания замкнутой, незамкнутой, монолитной, шарнирной или сборной при условии сцепления или проскальзывания по контакту и с возможной потерей устойчивости. Расчет проводится по методу начальных параметров

-«-

5

Комбинированная крепь

Д.И. Колин

Л.Н. Колина

Алгол-60

ЕС

Определяются оптимальные параметры комбинированной крепи из анкеров и набрызг-бетона по критериям минимума себестоимости и трудозатрат при возведении крепи

ЦНИИС

6

Недра

Б.З. Амусин

К.А. Ардашев

Ю.М. Васинский

Фортран

ЕС

Автоматизированная система проектирования капитальных горных выработок позволяет выбрать параметры крепи по заданным габаритам, данным геологических изысканий и т.п.

ВНИМИ

7

Сейсм

Н.Н. Фотиева

И.Я. Дорман

С.Ю. Хазанов

С.А. Абдрафикова

Фортран

ЕС

Проводится расчет круговых обделок глубокого заложения на сейсмические воздействия

ЦНИИС

8

Расчет круговых обделок

И.Е. Левин

Фортран

ЕС

Проводится расчет круговых обделок мелкого заложения на сейсмические воздействия

Ленметрогипротранс

9

Труба

Д.И. Колин

Л.Л. Старчевская

Фортран

ЕС

Определяется несущая способность защитного экрана из труб, сооружаемого в качестве временной или постоянной крепи выработки

ЦНИИС

10

Анкер

Л.Л. Старчевская

Фортран

ЕС

Определяется напряженно-деформированное состояние и устойчивость выработки, подкрепленной анкерами

-«-

11

RAK

В.В. Чеботаев

ПЛ-1

ЕС

Рассчитывается арочная крепь. Определяется шаг арок в зависимости от горнотехнических условий. Определяются также эпюры моментов, нормальных сил и реакций от единичных нагрузок

ГТМ

12

Расчет обделки

В.А. Гарбер

Фортран

ЕС

Проводится статический расчет обделки произвольного очертания различных типов: монолитных, сборных, замкнутых, разомкнутых, односвязных, многосвязных и т.п.

ЦНИИС

13

Нелинейный расчет обделки

В.А. Гарбер

Фортран

ЕС

То же с учетом нелинейности физико-механических свойств грунта, материала обделки, диаграммы деформирования

ЦНИИС

14

ПООIТКС

Е.Г. Пикус

С.Б. Христов

Фортран

ЕС

Проводится статический расчет симметричной тоннельной обделки по схеме Винклера

НИС Гидропроекта

15

ПРОГ

М.К. Каплан

Алгол-60

БЭСМ-6

Решается задача о плоско-деформированном или плоско-напряженном состоянии многослойного ортотропного упругого кольца под воздействием симметричной нагрузки

-«-

16

ПЛУТОН

М.К. Каплан

Р.А. Резников

Алгол-60

БЭСМ-6

То же для неосесимметричной нагрузки

-«-

17

Расчет крепи

Л.Б. Кучумова

АП

Наири-К

Проводится расчет анкерно-набрызг-бетонной крепи подземных гидротехнических сооружений в породах с коэффициентом крепости больше 4

-«-

18

СПРИНТ

Н.Н. Шапошников

В.Б. Бабаев

Г.В. Полторак

Е.Г. Перушев

ПЛ-1, Фортран, Ассемблер

ЕС

Система пространственного расчета конструкций и материалов, находящихся под воздействием статических и динамических нагрузок. Алгоритм расчета основан на методе конечных элементов (МКЭ)

МИИТ

19

STATUS

Т.Л. Бердзенешвили

О.К. Постольская

В.В. Сангунов

С.А. Юфим

Фортран

ЕС

Программный комплекс для статического расчета по МКЭ плоских и пространственных систем с анизотропными и нелинейными характеристиками

МИСИ

20

Расчет систем

Б.В. Фрадкин

Е.С. Лазаревский

Алгол-60

БЭСМ-6

Решается плоская статическая задача теории упругости по МКЭ

НИС Гидропроекта

21

FAK-1

Н.Н. Фотиева

Фортран

ЕС

Расчет напряженного состояния замкнутой некруговой обделки с учетом места установки и сейсмических воздействий

ТПИ

22

УШИ

Н.Н. Фотиева

Фортран

ЕС

Определение на основе модели Кулона-Мора условных зон нагруженного вокруг выработки грунта

-«-

23

«Анкер-контакт»

Д.И. Колин

Л.И. Колина

Алгол-60

ЕС

Определение усилий, возникающих в анкерах в процессе взаимодействия их с грунтом, с учетом влияния их друг на друга, времени и места установки, ползучести грунта

ЦНИИС

24

FOK-4

Н.Н. Фотиева

А.Н. Козлов

Фортран

ЕС

Расчет набрызг-бетонной крепи на действие собственного веса пород

ТПИ