Условия, определяющие ту или иную интенсивность снегопереноса на одном и том же участке снегопереноса, всегда бывают различными. Это различие приводит к тому, что интенсивность снегопереноса в одно и то же время и при одинаковой скорости ветра будет различной даже на двух параллельных полосах снегопереноса, отстоящих одна от другой буквально на несколько метров. Причем, различие это будет иметь место как в горизонтальной, так и в вертикальной плоскостях.

Следует отметить, что в вертикальной плоскости различие в интенсивности снегопереноса всегда имеет место даже при всех одинаковых условиях снегопереноса и на одной и той же полосе снегопереноса. В нижних слоях ветроснегового потока эта интенсивность всегда больше, чем в более верхних.

Следует отметить также, что при отсутствии снегопада перенос снега происходит на сравнительно небольшой высоте от земли, измеряемой несколькими метрами. Чаще всего эта высота принимается для расчетов за 2 м, хотя, конечно, перенос снега имеет место и на значительно большей высоте, а именно до 5 м.

5.7. Отложения переносимого снега

Выше установлено, что единственным фактором, вызывающим отрыв и затем перенос снега, является ветровой поток и что чем больше скорость ветра, тем большая масса снега отрывается и переносится. Отсюда вытекает, что при снижении скорости ветра уменьшается и отрыв и, что более важно, переносимая масса снега.

Опытами установлено, что насыщение ветрового потока снегом при увеличении скорости ветра происходит не мгновенно, а на протяжении некоторого интервала времени. Выпадение же переносимого снега из ветроснегового потока при уменьшении скоростей ветра происходит почти мгновенно. При этом масса переносимого снега уменьшается пропорционально.

где Vн - начальная скорость ветроснегового потока;

Vи - изменившаяся, уменьшенная скорость ветроснегового потока;

n - показатель степени, по данным различных исследователей для разных условий, колеблется в пределах от 2 до 5 (см. выше).

Таким образом, даже небольшое снижение скорости ветроснегового потока приводит к значительному выпадению снега из этого потока и его отложению.

Уменьшение скорости ветроснегового потока происходит как в связи с порывистостью, быстрыми изменениями скорости и направления ветра на ровном месте, так и в связи со встречей преград и углублений, вызывающих снижение скоростей ветроснегового потока.

Отложения переносимого снега на ровной поверхности. Наблюдения при помощи приборов, регистрирующих мгновенные значения скорости и направления ветра, показывают, что в большинстве случаев они не остаются постоянными, а непрерывно изменяются в тех или иных пределах. Этими наблюдениями установлено, что изменения скорости ветра на различных высотах от земли происходят неодинаково. Над самой поверхностью земли (на высоте до 2-х метров) изменения скорости ветра происходят беспрерывно и в довольно больших пределах. В течение одной секунды скорость ветра меняется в ту или другую сторону на 5 - 6 м/сек. Наибольшие изменения скорости ветра записаны на высоте 190 м от земной поверхности, где за одну секунду они достигают 10 м/сек. Более плавные изменения скорости ветра были записаны на высоте 250 м от поверхности земли.

Резкие изменения скоростей ветра происходят не только в больших толщах воздуха, но и в значительно меньших. Так, например, в слое высотой от поверхности земли 1,5 м скорость ветра в верхней части слоя может быть в одну и ту же секунду больше приземной на 1 - 3 м/сек. Подобные изменений скорости ветра на полосах малой ширины (в 3 - 5 м) происходят и в горизонтальном направлении.

Эти явления, как известно, называются порывистостью ветра, которая достигает наибольшей силы всегда у самой земной поверхности и с высотой чаще всего уменьшается.

Порывистость изменения скорости и направления ветра создает порывистость в движении ветроснегового потока и вызывает обратные течения и завихрения этого потока. Такая изменчивость в движении ветроснегового потока приводит к моментам, когда скорость, особенно в нижнем слое, падает до величины, недостаточной для дальнейшего передвижения частиц снега, и они останавливаются. Осевшая же при переносе частица снега может быть приведена в движение только при значительно более сильном ветре.

Отложения переносимого снега на ровной открытой поверхности большой площади происходят ровным, увеличивающимся по толщине слоем.

Отложения переносимого снега на ровной поверхности оказывают значительно большее влияние на плотность снега, чем непосредственное воздействие ветра. Образование на поверхности снежного покрова, в результате прошедшей метели или поземки, очень плотной корки (часто мощностью до 10 см и более), носящей название «ветровой наст» или «ветровая доска», происходит, в основном, не за счет уплотняющего воздействия ветра, а за счет измельчения и отложения переносимого снега. Образованию этой корки помогает и непосредственное воздействие ветра на поверхность снежного покрова, но в меньшей степени, чем непосредственное отложение переносимого снега.

Отложения переносимого снега в выемках. Проходя поперек выемки, ветровой поток не испытывает никакого сжатия, и его скорость при проходе через выемку не может быть больше скорости на подходе к ней.

С другой стороны, ветровой поток, проходя через выемку, увлекает за собой, благодаря внутреннему трению и вязкости, находящиеся в выемке массы воздуха. В связи с этим воздух из выемки в известной степени выдувается, воздушная среда расширяется и скорости ее несколько падают.

Рис. 10. Эпюра относительных скоростей и направлений ветрового потока в глубокой выемке

На рис. 10 и 11 приведены данные опытов, проведенных над моделями глубоких выемок в аэродинамической трубе И.В. Смирновым (1926 г.) и Б.В. Ивановым (1954 г.). Рисунки эти показывают, что при проходе ветрового потока через выемку в ней образуется зона циркуляции. Линией, соединяющей бровки выемки (на рис. 11 обозначена 0), эта зона делится как бы на две части: верхнюю и нижнюю. В верхней части движение ветрового потока в ту же сторону, что и в поле, однако скорости над линией раздела меньше, чем полевые.

Рис. 11. Эпюра относительных скоростей в глубокой выемке

В нижней части движение ветрового потока в обратную сторону по отношению к нолю; скорости также уменьшаются и к центру зоны, и к подветренному откосу. В связи с этим снежинки, попавшие в данную зону циркуляции, под действием силы тяжести будут падать, причем движение при падении в верхней части зоны будет происходить в ту же сторону, что и движение ветрового потока в поле, а в нижней - в обратную сторону. Таким образом, если снежинка пересечет линию, соединяющую бровки выемки, то она уже никак не может быть вынесена из выемки, а должна в ней отложиться. Примерный путь снежных частиц при попадании их в зону циркуляции в пределах выемки показан на рис. 12.

Рис. 12. Путь снежных частиц при попадании их в зону циркуляции в выемке. 10,5 - 10,8 - скорость передвижения воздушных струй (м/сек)

Чтобы окончательно установить место отложений снежинок в выемке, необходимо установить, на каком расстоянии от бровки выемки снежинка пересечет линию, соединяющую бровки выемки. На рис. 13 приведены графики расстояний, пролетаемых снежинками при падении в зависимости от начальной скорости V1 и высоты падения h (И.Г. Легченко, 1953 г.).

Рис. 13. Графики расстояний, пролетаемых снежинками при падении в зависимости от начальной скорости V1 и высоты h

Этот рисунок показывает, что даже при высоте падения h = 0,3 м (а это высота, на которой переносится основная масса снега) и при скорости V1 = 20 м/сек снежинка пролетает расстояние в 7,5 м. Поскольку же ширина выемки по верху при полуторных откосах и на дорогах V категории и даже при глубине 0,5 м равна 13,5 м, то вся эта основная масса снега не может быть перенесена даже через такую выемку и обязательно отложится в ней.

Снег при попадании в выемку с полуторными откосами, как показывает рис. 14, вначале откладывается на подветренном откосе, затем отложения продвигаются к наветреннему откосу и при достаточном объеме приносимого снега могут заполнить всю выемку.

Рис. 14. Последовательность отложений приносимого снега в глубокой выемке (буквами показан порядок последовательности отложений)

Зона циркуляции в выемках с полуторными откосами происходит в результате срыва струи воздуха на подветренной бровке выемки. Но если выемку сделать обтекаемой, например, с весьма пологими откосами, то срыва струи не будет, и ветровой поток будет плавно обтекать выемку. Рис. 15 показывает, что такое плавное обтекание будет происходить только при уклоне откосов выемки не менее 1:6. Однако рис. 15 показывает также, что какова бы ни была выемка, раскрытая или нераскрытая, общая схема прохода ветрового потока поперек любой выемки остается неизменной - проходя через выемку с любой пологостью откосов, ветровой поток не испытывает никакого сжатия. Наоборот, проходя через выемку, ветровой поток расширяется и отсюда, как следствие,, его скорость снижается и снижается до 0,7 от полевой. А такое снижение, как показали наблюдения, приводит к тому, что при полевой скорости ветра в 7 м/сек над проезжей частью в выемке откладывается примерно 62 % от общей массы переносимого снега, при скорости ветра в 10 м/сек - 55 % и при скорости ветра 15 м/сек - 50 %.

Рис. 15. Аэродинамические поперечники относительных скоростей, ветрового потока при обтекании выемок с различной пологостью откосов (по данным Б.В. Иванова)

Отложения снега в такой выемке, как это показывает рис. 16, происходят широким слоем, но вначале ближе к подветреннему откосу, а затем при достаточном объеме могут заполнить всю выемку.

Рис. 16. Последовательность отложений снега в мелкой, раскрытой выемке

Отложения переносимого снега у сплошных возвышающихся препятствий. Лабораторные исследования движения ветрового потока у моделей сплошного вертикального забора (А.И. Морошкин, 1934 г.), показали, что движущийся поток воздуха, приближаясь к препятствию, постепенно изменяет направление своих струй - они перестают быть горизонтальными, отклоняются вверх и обтекают препятствие (см. рис. 17). Скорости ветрового потока в верхних слоях увеличиваются, а в нижних - уменьшаются, и у самой поверхности земли, недалеко от препятствия, становятся равными нулю (см. рис. 18).

Рис. 17. Направление струй ветрового потока у сплошного препятствия

Рис. 18. Скоростные спектры ветрового потока у сплошного препятствия

Перевалив через препятствие, ветровой поток как бы раздваивается: верхние его слои движутся по направлению ветра, нижние, наоборот, против направления ветра (см. рис. 17), в связи с чем за препятствием образуются две зоны ветрового потока. На раздельной линии этих зон скорости ветрового потока наименьшие и даже могут быть равными нулю (см. рис. 18). Скорости ветрового потока в верхней зоне увеличиваются по мере удаления от раздельной зоны. Скорости в этой зоне увеличиваются в начале и по удалению от препятствия, а затем снижаются и на некотором расстоянии от препятствия становятся равными первоначальной, полевой скорости.

Скорости ветрового потока в нижней зоне наименьшие у самого препятствия. По удалению от него скорости возрастают, но по абсолютной величине не превышают 0,5 от первоначальной, полевой скорости.

Рис. 19. Путь снежных частиц в ветровом потоке у сплошного препятствия. 10,28 - скорость передвижения воздушных струй

Путь движения снежных частиц в ветроснеговом потоке перед сплошным возвышающимся препятствием и за ним показан на рис. 19. Наблюдения над отложениями переносимого снега у таких препятствий показали, что (см. рис. 20) вначале эти отложения имеют место только перед препятствием, затем по мере роста отложений перед препятствием отложения снега начинаются и за препятствием и продолжаются до тех пор, пока перед препятствием не будет заполнена зона пониженных скоростей, а за препятствием - зона обратного движения ветрового потока. После заполнения этих зон снег через занесенное препятствие переносится беспрепятственно и не отлагается.

Рис. 20. Отложения снега у сплошного препятствия

При встрече ветроснегового потока с насыпями с полуторными и тройными уклонами откосов с направлениями ветрового потока и со скоростями происходит то же, что и при встрече со сплошными вертикальными препятствиями - переносимый снег вначале откладывается перед насыпью, а затем и за насыпью. Таких отложений переносимого снега не будет только тогда, когда откосы насыпи будут положе 1:6 - 1:8.

Отложения переносимого снега у решетчатых возвышающихся препятствий. Ветровой поток у решетчатых возвышающихся препятствий претерпевает более сложные изменения, чем у сплошных. Вызывается это тем, что ветровой поток, подходя к решетчатому препятствию, делится на две части: одна часть, испытывая тормозящее действие препятствия, обтекает его, а другая проходит через просветы препятствия, не огибая его.

Величина каждой из этих частей зависит от просветности препятствия: чем больше просветность, тем больше часть, проходящая в отверстия, и тем, следовательно, меньше часть, огибающая препятствие.

Тормозящее действие решетчатого препятствия вызывает некоторое снижение скорости подходящего к нему ветрового потока (см. рис. 21).

Рис. 21. Поведение ветрового потока у решетчатых препятствий по мере отложений у них снега

Часть ветроснегового потока, проходящая в отверстия, испытывает сжатие и в связи с этим приобретает увеличение скорости. Но по выходе из отверстий этот поток вновь расширяется и уже значительно теряет свою скорость. Затем по достижении некоторой минимальной скорости ветроснеговой поток под воздействием огибающей части потока начинает постепенно увеличивать свою скорость и на определенном расстоянии от препятствия его скорость вновь становится равной полевой, первоначальной (см. рис. 21).

Первоначальные отложения переносимого снега в небольшой части происходят перед препятствием. Отложения снега за решетчатым препятствием в начальный период происходят не у самого препятствия, а на некотором отдалении от пего, именно в том месте, где ветроснеговой поток имеет наименьшие скорости. Начальное отложение снега, увеличиваясь в высоту, само становится препятствием и откладывает за собой снег как сплошное препятствие. По мере работы препятствия снегом заполняется как пространство между ним и начальным отложением, так и вся длина зоны циркуляции, образующейся за начальным отложением снега, как за сплошным препятствием.