5.28. Кабель укладывается змеевиком с пропуском петель в прорези реек или надеванием их на гвозди. При этом следует учитывать рекомендации п. 4.48 настоящего Руководства. Отклонение шага раскладки кабеля от расчетного не должно быть более 3 мм. После окончания укладки замеряется электрическое сопротивление токопроводящей жилы мостом постоянного тока. Отклонение замеренной величины сопротивления от величины, определяемой по формуле

rt = Lк (A tв + C),                                                       (97)

где Lк - расчетная длина кабеля в элементе, не должна превышать ±5 %.

В противном случае производится переукладка кабеля с изменением в ту или иную сторону шага его раскладки.

5.29. Кабель заливается раствором по секциям, образуемым укладкой дополнительных деревянных брусков поперек рядов кабеля, отстоящих один от другого на 1 - 1,5 м. После заливки одной секции эти бруски перекладываются на новое место и заливаются последующие секции.

После заливки всех секций крайние фиксирующие рейки снимаются и заливаются петли кабеля.

Чтобы не повредить изоляцию кабеля, эти операции выполняются осторожно и, как правило, в присутствии производителя работ.

После заливки кабеля раствором необходимо повторно замерить сопротивление его токопроводящих жил либо осуществить их «прозвонку», а затем замерить сопротивление изоляции кабеля мегометром при напряжении 1000 В (между токопроводящими жилами и между каждой жилой и землей). Сопротивление не должно быть менее 0,5 МОм.

После затвердевания раствора устанавливается клеммная коробка, концы кабеля выводятся на клеммы и крепятся «под винт».

5.30. При укладке кабеля в воздушной прослойке его фиксация (после размотки и проверки сопротивления жилы) производится деревянными рейками сечением 30×20 мм, подкладываемыми под кабель поперек его рядов. Кабель крепится в соответствии с рекомендациями п. 4.39 настоящего Руководства. Гвозди вбиваются либо в основу для крепления (если таковая имеется), либо с обеих сторон каждого ряда на расстоянии 5 мм от поверхности кабеля. После крепления рядов кабеля удаляются гвозди из крайних реек и хомутиками из паронита фиксируются его петли.

При укладке кабеля в воздушной прослойке на деревянную основу (см. рис. 13, г, е) рейки использовать не рекомендуется. После укладки слоя асбеста у противоположных сторон обогреваемой площади в деревянную основу вбивается ряд гвоздей с соответствующим шагом, раскладывается кабель, фиксируются его ряды полосками из паронита, крепящимися также непосредственно к деревянной основе, демонтируются гвозди и крепятся петли кабеля. Допуск на отклонение шага раскладки 3 мм.

5.31. В целях уменьшения трудоемкости работ по укладке греющего кабеля рекомендуется внепостроечное изготовление непрерывных лент или полос с уложенным кабелем (рис. 31). Для поворота ленты на 180° основа ленты перерезается в соответствующем месте (линия 5 на рис. 31, а, б) и петля кабеля разгибается в прямую линию. Если расстояние между смежными лентами должно быть увеличено (например, при укладке лент между лагами), основу следует разрезать по линиям 4 - 6 (рис. 31, а) и поворот ленты осуществлять с некоторым смещением основы по линиям 4 и 6 (рис. 31, в).

Рис. 31. Схемы непрерывных обогревательных лент и полос из греющего кабеля

а - непрерывная лента; б, в - варианты укладки ленты; г - обогревательная полоса; 1 - кабель; 2 - основа из диэлектрического эластичного материала; 3 - лага; 4 - 6 - линии разреза основы; 7 - пластины из пластмассы; 8 - канавка

При изготовлении лент длину прямых участков кабеля (до поворота), выступающих за основу, Δ рекомендуется принимать от 20 до 30 мм.

Укладка и поворот полос (рис. 31, г) осуществляются таким же образом.

В качестве основы лент могут быть использованы стеклохолст и другие электроизоляционные эластичные материалы. Кабель к основе рекомендуется крепить приклеиванием (например, клеем БМК-5К) или другим способом. Пластины для полос могут изготовляться из поливинилхлорида.

Диэлектрические пластины рекомендуется также использовать для фиксации геометрии раскладки кабеля (вместо деревянных реек) при его укладке обычным способом.

5.32. Замоноличивание кабеля в заводских условиях следует производить в соответствии с «Указаниями по выполнению электропроводок, замоноличиваемых в строительные конструкции при их изготовлении на заводах домостроительных комбинатов и стройиндустрии» (СН 333-65). Перед заливкой кабеля раствором особое внимание следует обращать на правильность фиксации и надежность крепления кабеля. Здесь также рационально использовать ленты и полосы с закрепленным кабелем. После укладки кабеля и после заливки его раствором производится замер электрического сопротивления жил в соответствии с пп. 5.28 и 5.29 настоящего Руководства.

5.33. Укладку кабеля в воздушной прослойке или в теплопроводные слои, в том числе в заводских условиях, следует оформлять актом освидетельствования скрытых работ, в котором указываются номер нагревательного элемента, длина кабеля, шаг его раскладки, сопротивление токопроводящих жил и температура, при: которой производился замер, отклонение сопротивления от предусмотренного проектом, сопротивление изоляции элемента, исполнительная документация на элемент.

5.34. Монтаж экранирующих сеток должен выполняться с учетом рекомендаций пп. 4.41 - 4.45 настоящего Руководства. После монтажа сеток мостом постоянного тока замеряется их сопротивление между точкой подключения к контуру заземления либо к зануляющему проводнику и наиболее удаленной от этого места точкой. Сопротивление не должно превышать 2 % сопротивления соответствующего нагревательного элемента. Замер сопротивления должен оформляться актом освидетельствования скрытых работ.

5.35. Тепловые испытания полностью смонтированных нагревательных устройств рекомендуется производить не менее 7 ч при расчетной температуре воздуха в помещениях. Температура поверхности пола должна быть равномерной (на ощупь). В теплый период года температура пола должна быть на 2 - 3 °С выше температуры воздуха в помещениях, а в холодный - не более чем на Δtн ниже.

5.36. Настройку автоматики регулирования и защиты следует производить таким образом, чтобы нагревательный элемент отключался при достижении им расчетной температуры (по жиле) и снижения температуры воздуха на 10 °С ниже расчетной. Расчетное сопротивление (при расчетной температуре) элемента rtp определяется по формуле

rtp = rt (A τпр + C) / (A tв + C),                                           (98)

где rt - замеренное сопротивление элемента после его укладки (п. 5.28 настоящего Руководства), Ом; τпр - расчетная температура жилы (по данным проекта), °С.

Настройку на отключение нагревательного элемента при достижении температуры его жилы предельной величины надлежит выполнять в такой последовательности.

Включают нагревательное устройство на автоматический режим управления и по показаниям амперметра и вольтметра периодически определяют сопротивление жилы. При достижении сопротивления расчетной величины настроечным винтом изменяют величину регулировочного сопротивления измерительной схемы до момента отключения нагревательного элемента. Данное положение регулировочного винта должно быть зафиксировано.

Настройка автоматики на отключение при снижении температуры воздуха в помещении производится в заводских условиях (на 10 °С).

5.37. Документация, предъявляемая при приемке электрических систем обогрева, должна включать:

комплект рабочих чертежей с надписями, сделанными ответственными за производство монтажных работ, о соответствии выполненных в натуре работ этим чертежам или внесенным в них изменениям;

акты освидетельствования скрытых работ;

акты теплового испытания нагревательных устройств системы обогрева;

акты индивидуального опробования автоматики регулирования и защиты.

5.38. В акте приемки электрической системы обогрева должны быть указаны: результаты испытаний нагревательных устройств, включая тепловые; данные о качестве выполненных работ.

Приемка электрических систем обогрева в эксплуатацию без автоматики регулирования и защиты нагревательного элемента от перегрева не допускается.

6. ПРИМЕРЫ ТЕПЛОТЕХНИЧЕСКОГО РАСЧЕТА СИСТЕМ ОБОГРЕВА ПОЛОВ

Пример 1. Водяная система с нагревательными элементами, уложенными в воздушной прослойке

Исходные данные: здание - жилое, многоэтажное с холодным подпольем, огражденным стенками (n = 0,9; αн = 15 ккал/(м2 · ч · °С); для характерных помещений tв = 20, Δtн = 2 °С);

влажностный режим в помещениях - нормальный, зона влажности района строительства - сухая (условия эксплуатации А);

климатологические данные района строительства: tн = -55; tср.о = -19,5 °С; nо = 254 сут;

стоимостные показатели элементов системы и цокольного перекрытия: Cиз = 60; Cк = 77 руб/м3; Cтр = 1,77 руб/м;

общие нормы амортизационных отчислений: Hтр = 0,048; Hиз = 0,03; Hи = 0,03;

стоимость тепловой энергии Cт = 15 руб/Гкал;

коэффициент, учитывающий изменение стоимости тепловой энергии на перспективу, lт = 1,3;

нагревательные элементы выполнены из обыкновенных водогазопроводных труб по ГОСТ 3262-75 с Dтр = 0,0268 м и уложены в воздушной прослойке;

средняя температура теплоносителя в трубах (поверхности труб) τтр = 60 °С;

продолжительность эксплуатации системы обогрева в течение суток Z = 24 ч;

коэффициент запаса по мощности k = 1,15;

конструкция цокольного перекрытия и теплофизические характеристики материалов отдельных конструктивных слоев приведены на рис. 32.

Рис. 32. Расчетная схема цокольного перекрытия, оснащенного водяной или электрической системой обогрева с нагревательными элементами, уложенными в воздушной прослойке

1 - дощатый настил [δ = 29 мм, λ = 0,12 ккал/(м · ч · °С)]; 2 - нагревательный элемент; 3 - стяжка из цементно-песчаного раствора [δ = 30 мм, λ = 0,65 ккал/(м · ч · °С)]; 4 - лага; 5 - кирпичные столбики 250×250 мм, устраиваемые по сетке с ячейкой 500×500 мм [δ - по расчету, λ = 0,6 ккал/(м · ч · °С)]; 6 - плиты жесткие минераловатные на синтетическом связующем [γ×200 кг/м3, δ - по расчету, λ = 0,065 ккал/(м · ч · °С)]; 7 - несущая железобетонная плита цокольного перекрытия [δ = 120 мм, λ = 1,65 ккал/(м · ч · °С)]

Расчет

1. В соответствии с п. 4.76 и данными табл. 2 настоящего Руководства для характерных помещений жилых зданий определяются расчетные средние температура τсрпл и плотность теплового потока qпл у поверхности пола:

tсрпл = tв - Δtн = 20 - 2 = 18 °C; qпл = 0; tср = tсрпл = 18 °С.

2. Вычисляется относительная площадь, занимаемая изоляцией,  исходя из следующих соображений:

площадь ячейки сетки, по которой устроены кирпичные столбики, 0,5 × 0,5 = 0,25 м2;

в эту площадь входят четыре четверти площади кирпичного столбика, т.е. Fк = 0,25 × 0,25 = 0,0625 м2;

площадь ячейки, занимаемая изоляцией, Fи3 = 0,25 - 0,0625 = 0,1875 м2;

относительная площадь, занимаемая изоляцией,  = Fиз / Fк = 0,1875 / 0,0625 = 3.

3. По формулам (20) и (21) определяются объемы каркаса (кирпичных столбиков) и изоляционного материала, необходимые для устройства разнородного изоляционного слоя с термическим сопротивлением, равным единице, Vк и Vиз:

4. Вычисляется коэффициент теплоотдачи поверхности труб αlтр по формуле (19):

αlтр = 29,2 Dтр = 29,2 · 0,0269 = 0,782 ккал/(м · ч · °С).

5. По формуле (18) определяется средняя за отопительный период температура на уровне заложения нагревательного элемента t″ср:

t′ср = tв + (tср - tв) (tв - tср.о) / (tв - tн) = 20 + (18 - 20) [20 (-19,5)] / [20 - (-55)] = 18,95 °С.

6. Вычисляются комплексы L, М, N по формулам соответственно (13), (14) и (17):

L = 1,05 (t′cp - tcp.o) n nо Z Cт lт 10-6 = 1,05 [18,95 - (-19,5)] 0,9 · 254 · 24 · 15 · 1,3 · 10-6 = 4,32 руб · ч · °С/(ккал · год);

М = (Eн + Hтр) Cтр k (tср - tн) n / [αlтр (τтр - tcp)] = (0,08 + 0,048) 1,77 · 1,15 [18 - (-55)] 0,9 / [0,782 (60 - 18)] = 0,521 руб · ч · °С/(ккал · год);

N = (Eн + Hт) Cиз Vиз + (Eн + Hк) Cк Vк = (0,08 + 0,03) · 60 · 0,149 + (0,08 + 0,03) 77 · 0,0497 = 1,407 руб. · ккал/(м4 · ч · °С · год).

7. Определяется оптимальное сопротивление теплопередаче от уровня заложения нагревательных элементов к воздуху подполья R′экн по формуле (12):

8. По формуле (22) определяется плотность теплового потока в подполье qн:

qн = (tср - tн) n / R′экн = [18 - (-55)] 0,9 / 1,86 = 35,4 ккал/(м2 · ч).

9. По формулам (23) и (24) вычисляются удельная тепловая мощность системы обогрева qтр и шаг раскладки труб h:

qтр = k (qпл + qн) = 1,15 (0 + 35,4) = 40,7 ккал/(м2 · ч);

h = αlтр (τтр - tср) / qтр = 0,782 (60 - 18) / 40,7 = 0,807 м.

10. Определяются удельные приведенные затраты по трубопроводам Птр и расходу тепла Пт соответственно по формулам (26) и (27):

Птр = M qтр / [k n (tср - tн)] = 0,521 · 40,7 / {1,15 · 0,9 [18 - (-55)]} = 0,281 руб/(м2 · год);

Пт = L / R′экн = 4,32 / 1,86 = 2,32 руб./(м2 · год).

11. По номограмме рис. 22 определяется коэффициент теплоотдачи нижней грани воздушной прослойки α′н по qн = 35,4 ккал/(м2 · ч) и tв = 20 °С. Находим α′н = 5,0 ккал/(м2 · ч · °С).

При машинном счете α′н определяется из системы уравнений (30) и (31).

12. Вычисляется термическое сопротивление конструктивных слоев Rк.с. Из рис. 32 следует, что конструктивными слоями в нашем примере являются разнородный слой стяжки из цементно-песчаного раствора и кирпичных столбиков и несущая железобетонная плита. Термическое сопротивление разнородного слоя стяжки может быть определено по расчетной схеме с разрезанием слоя плоскостями, параллельными тепловому потоку, на участки, занимаемые столбиками и стяжкой. Тогда на основании формулы (6) главы СНиП по строительной теплотехнике сопротивление этого слоя будет равно:

Rст = (Fк + Fст) δст / (Fк λк + Fст λст) = (0,0625 + 0,1875) 0,03 / (0,0625 · 0,6 + 0,1875 · 0,65) = 0,0471 м2 · ч · °С/ккал.

Термическое сопротивление железобетонной плиты и конструктивных слоев:

Rп = δп / λп = 0,12 / 1,65 = 0,0727 м2 · ч · °С/ккал;

Rк.с = Rст + Rп = 0,0471 + 0,0727 = 0,1198 м2 · ч · °С/ккал.

13. Определяется постоянная составляющая сопротивления теплопередаче от уровня заложения нагревательных элементов к воздуху подполья R по формуле (29):

R = 1 / α″н + Rк.с + 1 / αн = 1 / 5 + 0,1198 + 1 / 15 = 0,386 м2 · ч · °С/ккал.

14. Вычисляются удельные приведенные затраты по слою изоляции Пиз по формуле (28):

Пиз = N (R′экн - R) = 1,407 (1,86 - 0,386) = 2,07 руб/(м2 · год).

15. Определяются суммарные приведенные затраты Пmin по формуле (25):