Остальные обозначения указаны непосредственно в тексте.

4.2 Индексы обозначений параметров

Индексы, соответствующие обозначениям параметров, относят к величинам, характеризующим эти параметры.

Следующие индексы относят к обозначениям:

в - верхнего предела измерений или (и) изменения контролируемого параметра;

н - нижнего предела измерений или (и) изменения контролируемого параметра;

с - стандартных условий;

« - » (черта над обозначением параметра) - среднего значения параметра.

5 МЕТОД ОПРЕДЕЛЕНИЯ РАСХОДА

5.1 Принцип метода

Расход среды определяют методом переменного перепада давления. Принцип метода состоит в том, что в ИТ, по которому протекает среда, устанавливают СУ, создающее местное сужение потока. Вследствие перехода части потенциальной энергии потока в кинетическую средняя скорость потока в суженном сечении повышается, в результате чего - статическое давление в этом сечении становится меньше статического давления перед СУ. Разность этих давлений тем больше, чем больше расход протекающей среды, и, следовательно, она может служить мерой расхода.

Из закона сохранения энергии для стационарного потока следует

Использование в решении этого уравнения условия неразрывности потока несжимаемой среды

приводит к теоретическому уравнению расхода несжимаемой среды

гдеuD - скорость течения потока в ИТ;

ud- скорость течения потока в отверстии СУ;

p1 - давление на входе в СУ;

p2 - давление на выходе из СУ;

??- плотность несжимаемой жидкости;

Е - коэффициент скорости входа

(5.1)

- перепад давления на СУ.

Действительный массовый расход получается меньше рассчитанного по теоретическому уравнению расхода, что корректируется коэффициентом истечения С и дополнительно коэффициентом расширения ?? для сжимаемых сред. Тогда уравнение расхода принимает вид

(5.2)

Значения С и ?? определены в результате экспериментальных исследований, проведенных на гидравлически гладких трубопроводах при равномерном распределении скоростей потока по сечению трубопровода и развитом турбулентном режиме течения этого потока. При исследованиях применяли диафрагмы с острой входной кромкой.

Наличие местных гидравлических сопротивлений (трубопроводной арматуры, отводов и т.д.) и применение шероховатых трубопроводов приводит к искажению распределения скорости по их сечению.

Для выравнивания распределения скоростей по сечению ИТ, неравномерность которого обусловлена наличием местных сопротивлений, применяют прямые участки трубопроводов определенной длины. Влияние шероховатости невозможно исключить подобным конструктивным путем. Поэтому влияние шероховатости ИТ на значение коэффициента истечения корректируют с помощью поправочного коэффициента на шероховатость внутренней поверхности ИТ Kш.

Влияние на коэффициент истечения притупления входной кромки отверстия диафрагмы, обусловленного ее износом, корректируют с помощью поправочного коэффициента на притупление входной кромки отверстия диафрагмы Kп.

Таким образом, уравнение массового расхода в общем случае примет вид

qm = CEKшKп ?? ( ?? d2 / 4) (2 ?? ?? р)1/2 = ?? Кш Kп ?? ( ?? / 4) (2?? ?? р1/2 ,(5.3)

где

?? = ЕС.

Международный стандарт [1] не рассматривает случаи влияния на коэффициент истечения шероховатости внутренней поверхности ИТ и степени притупления входной кромки диафрагмы.

Введение коэффициентов, учитывающих влияние шероховатости внутренней поверхности ИТ и степени притупления входной кромки диафрагмы, расширяет область применения СУ.

Значение объемного расхода, приведенного к стандартным условиям, может быть определено из уравнения

qс = qт / ??.(5.4)

Значение объемного расхода в рабочих условиях может быть определено из уравнения

q0 = qm / ??(5.5)

5.2 Расчет коэффициента истечения

В общем случае коэффициент истечения представляют уравнением

где СRe, В и п - параметры, зависящие от типа СУ, причем

CRе = В/С-

Поправочный коэффициент на число Рейнольдса представляет собой уравнение

(5.6)

тогда

С=С- КRe.(5.7)

Коэффициенты С, В и СRe зависят только от параметров СУ.

Из уравнений (3.2), (5.3) и (5.6) видно, что С и KRе зависят от числа Рейнольдса, число Рейнольдса зависит от значения расхода, а значение расхода, в свою очередь, зависит от С и КRe.

Решение уравнений расхода для СУ, значение коэффициента истечения которых зависит от числа Рейнольдса, может быть найдено методом последовательных приближений. Такой метод рекомендует [1].

Алгоритм определения расхода можно упростить без изменения погрешности определения С, если уравнение (5.6) представить в виде

(5.8)

где Re-- число Рейнольдса, найденное для расхода, определенного при С = С-;

а и b - постоянные коэффициенты, зависящие от типа СУ (разделы 8 - 10).

Значения коэффициентов a и b получают из уравнения

(5.9)

Уравнение (5.9) - результат линейной аппроксимации от КRe для СУ каждого типа. В связи с тем, что изменение значения КRe лежит в небольших пределах (менее ±4 %), а значения КRe и п близки к единице, аппроксимация является достаточно точной и не влияет на погрешность определения коэффициента истечения.

5.3 Порядок определения массового расхода

Порядок определения массового расхода сводится к следующей процедуре:

- определяют ?? по уравнению (3.1);

- определяют С- (см. разделы 8-10);

- при выполнении условия (8.6) для диафрагм и условия (9.4) для сопел ИСА 1932 и сопел Вентури коэффициент шероховатости Кш принимают равным единице; при невыполнении указанных условий определяют приближенное значение коэффициента шероховатости Кш, принимая в уравнении (В.27) АRe = 0,5 (см. уравнение В.3);

- вычисляют массовый расход при С = С-, т.е. qm- по уравнению

qm- = CEKшKп ?? ( ?? d2 / 4) (2 ?? ?? р)1/2(5.10)

- рассчитывают Re при массовом расходе qm-, т.е. по уравнению

(5.11)

- определяют КRe по уравнению (5.8);

- определяют число Рейнольдса по уравнению

Re=Re-KRe;(5.12)

- при выполнении условия (8.6) для диафрагм, условия (9.4) для сопел ИСА 1932 и сопел Вентури (Kш = 1) определяют действительное значение массового расхода по уравнению

qm = qm- KRe;(5.13)

- при невыполнении условия (8.6) для диафрагм, условия (9.4) для сопел ИСА 1932 и сопел Вентури рассчитывают по условию В.3.2 действительное значение коэффициента шероховатости с учетом зависимости от Re; в этом случае действительное значение массового расхода определяют по уравнению

(5.14)

5.4 Определение физических свойств контролируемой среды

Физические свойства среды могут быть определены путем непосредственных измерений (ГОСТ 8.563.2) или косвенным путем по нормативным документам, утвержденным Госстандартом России (ГОСТ 30319.0 - ГОСТ 30319.3 и др.) или Государственной службой стандартных справочных данных (ГСССД).

6 ОБЩИЕ ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ

6.1 Условия применения стандартных сужающих устройств

6.1.1 СУ должно быть изготовлено, установлено и применено в соответствии с настоящим стандартом.

Если СУ изготовляют и применяют с нарушениями требований настоящего стандарта, следует выполнить индивидуальную калибровку этого СУ в условиях, соответствующих условиям его эксплуатации.

6.1.2 Соответствие геометрических параметров СУ требованиям стандарта проверяют периодически через установленные интервалы времени. При выборе межповерочного интервала руководствуются условиями эксплуатации, а при наличии статистических данных - надежностью работы в условиях эксплуатации.

Настоящий стандарт не учитывает прогрессирующие погрешности, вызванные изменением коэффициента истечения вследствие образования осадков на СУ и стенках ИТ.

6.1.3 СУ изготовляют из коррозионно-эрозионно-стойкого по отношению к среде материала, температурный коэффициент линейного расширения которого известен в рабочем диапазоне температур.

6.2 Контролируемая среда

6.2.1 Среда может быть сжимаемой (газ, пар) или несжимаемой (жидкость).

6.2.2 Среда должна быть однофазной и однородной по физическим свойствам. Коллоидные растворы с высокой степенью дисперсности (например, молоко) допускается считать однофазными.

6.3 Условия течения контролируемой среды

6.3.1 Условия течения среды должны соответствовать требованиям 1.2. Измерения пульсирующих, переменных и нестационарных потоков рассмотрены в приложении Д ГОСТ 8.563.2.

6.3.2 Фазовое состояние потока не должно изменяться при его течении через СУ. Для уменьшения вероятности изменения фазового состояния среды при протекании ее через СУ увеличивают относительный диаметр отверстия СУ ?? с целью уменьшить перепад давления на СУ.

6.3.3 Для сжимаемой среды отношение перепада давления к абсолютному давлению должно быть не более 0,25.

7 УСТАНОВКА СТАНДАРТНЫХ СУЖАЮЩИХ УСТРОЙСТВ

7.1 Общие требования

7.1.1 Применяемый метод измерений предусматривает протекание контролируемой среды только по трубопроводам круглого сечения.

7.1.2 Конструкция и способ монтажа СУ должны обеспечивать его периодический осмотр.

7.1.3 Условия течения потока непосредственно перед СУ должны соответствовать требованиям 7.4. Такие условия могут быть реализованы, если при установке СУ выполнены требования раздела 7.

7.1.4 Местные сопротивления (МС), установленные в ИТ, искажают кинематическую структуру потока. Поэтому СУ устанавливают между двумя прямыми участками ИТ постоянного сечения необходимой длины, не содержащими МС и ответвления (независимо от того, подводят или отводят поток через эти ответвления в процессе измерения).

Необходимые минимальные длины прямых участков ИТ зависят от вида МС, их размещения на ИТ, типа СУ и относительного диаметра его отверстия (формула 7.2).

7.1.5 Допускается применение сварных труб при условии, что внутренний сварной шов параллелен оси трубы. Шов не должен располагаться в секторе с углом ±30?? поперечного сечения трубы от оси отдельного отверстия для отбора давления.

Наличие выступающей части шва на длине 2D от места отбора давления на внутренней поверхности ИТ не допускается.

7.1.6 Значение внутреннего диаметра ИТ следует выбирать из диапазонов допустимых значений, приведенных для СУ каждого типа в 8.3.1; 9.6.1; 10.1.1.1-10.1.1.3 и 10.2.4.1.

7.1.7 На внутренней поверхности ИТ не должны скапливаться осадки в виде пыли, песка, металлических предметов и другие загрязнения на длине не менее 10D до СУ и не менее 4D за ним.

7.1.8 В ИТ с газовой средой предусматривают дренажные и (или) продувочные отверстия для удаления твердых осадков и жидкостей. В процессе измерения расхода не допускаются утечки среды через эти отверстия.

Диаметр дренажных и продувочных отверстий должен быть не более 0,08D, а расстояние, измеренное по прямой линии от центра одного из этих отверстий до центра отверстия для отбора давления, расположенного с той же стороны СУ, должно быть более 0,5D. Кроме того, угол между радиальными плоскостями трубы, проходящими через соответствующие оси дренажных или продувочных отверстий и через ось отверстия для отбора давления, должен быть не менее 30??.

7.1.9 Прямые участки ИТ должны иметь термоизоляцию.

При измерении температуры перед СУ допускается термоизолировать только участок ИТ от места размещения чувствительного элемента термометра до СУ.

При измерении температуры за СУ термоизолируют прямые участки ИТ перед и за СУ. Участок ИТ перед СУ термоизолируют для диафрагм и сопел на длине 5D, а для труб Вентури - 0,5D. Участок ИТ за СУ термоизолируют от места размещения чувствительного элемента термометра до СУ.

Допускается не термоизолировать ИТ, если разность температур среды перед и за СУ не превышает 1/3 погрешности измерения температуры.

Устанавливать чувствительный элемент термометра или его гильзу при отсутствии термоизоляции ИТ следует на участке между точками измерения разности температур при одновременном соблюдении требований 6.3 ГОСТ 8.563.2.

7.2 Длины прямых участков измерительных трубопроводов

Требования составлены на основе требований [1], [5] - [8] (см. также В.2).

7.2.1 Наименьшие длины Lk1 прямых участков ИТ между СУ (кроме труб Вентури) и любыми ближайшими к нему МС должны быть рассчитаны по уравнению

Lk1 = l / D=ak + bk,(7.1)

где аk, bk, ck - постоянные коэффициенты, зависящие от типа МС, значения которых приведены в таблице 2;

l, D - абсолютная длина и внутренний диаметр рассчитываемого участка ИТ.

Таблица 2 - Наименьшие относительные длины Lк1 прямых участков между СУ (кроме труб Вентури) и местными сопротивлениями

Местное сопротивление

Коэффициенты уравнения (7.1)

Наименьшая относительная длина прямого участка при ??, равном

0,2

0,3

0,4

0,5

0,6

0,7

0,75

Для МС, расположенных перед СУ

1 Задвижка, равнопроходный шаровой кран

11,5

82,0

6,7

12

12

12

13

15

19

24

2 Пробковый кран

14,5

30,5

2,0

16

18

20

23

26

30

32

3 Запорный клапан, вентиль

17,5

64,5

4,1

18

18

19

22

26

33

38

4 Затвор (заслонка)

21,0

38,5

1,4

25

29

32

36

40

45

47

5 Конфузор

5,0

114

6,8

5

5

6

6

9

16

22

6 Симметричное резкое сужение

30,0

0,0

0,0

30

30

30

30

30

30

30

7 Диффузор

16,0

185

7,2

16

16

17

18

21

31

40

8 Симметричное резкое расширение

47,5

54,5

1,8

51

54

58

64

70

77

80

9 Одиночное колено, тройник с заглушкой

10,0

113

5,2

10

11

11

14

18

28

36

10 Группа колен в одной плоскости, разветвляющиеся потоки

13,5

82,5

3,7

14

15

17

20

26

36

42

11 Группа колен в разных плоскостях, смешивающиеся потоки

33,5

115

4,0

34

35

37

41

49

62

70

12 Местное сопротивление неопределенного типа

54,5

65,0

1,6

60

64

70

76

84

92

96

13 Гильза термометра, плотномера или карман диаметром:

?? 0,03D

??0,13D

5,0

20,0

0,0

0,0

0,0

0,0

5

20

5

20

5

20

5

20

5

20

5

20

5

20

14 Струевыпрямитель

22,0

0,0

0,0

22

22

22

22

22

22

22

Для МС, расположенных за СУ

15 Любое местное сопротивление

0,00

8,55

0,55

4

5

6

6

7

7

8

Примечания

1 Значения наименьших длин прямых участков приведены для контроля их расчета по уравнению (7.1). Согласно 7.2.2 эти значения следует округлять в большую сторону до получения целого числа.

2 Характеристики МС приведены в приложении В.

3 Значения длин прямых участков в пунктах 1, 2, 3, 4 таблицы 2 приведены для полностью открытой запорной арматуры.

4 Длины прямых участков измеряют от торцов диафрагмы до внешней границы установки МС (см. В.2).

5 Термометры и плотномеры диаметром менее 0,13D устанавливают за СУ на расстоянии 5D - 15D. Любые термометры перед СУ устанавливают на расстоянии не далее первого МС.