11.4. Для определения изгибающего момента в фундаментной плите рекомендуется метод, основанный на использовании эквивалентного массива с кладкой из обыкновенных бетонных массивов. В качестве эквивалентного принимается массив из бетона марки 150 для стенок с глубиной у причала до 11,5 м н марки 200 - для глубин 13 м и более. При этом соотношение размера В массива в плане к его высоте h принимается равным 4:1 или 3:1 соответственно для глубин у причала до 11,5 м и для глубин 13 м и более.

Изгибающий момент, действующий на 1 пог. м сечения фундаментной плиты,

(56)

где mэ - коэффициент, принимаемый равным для сооружений I класса капитальности 0,4; II и III классов - 0,45; IV класса - 0,5;

- нормативное значение осевого растяжения бетона, принимаемое по СНиП на бетонные и железобетонные конструкции гидротехнических сооружений;

- коэффициент перехода к упругопластическим характеристикам бетона (mh - поправочный коэффициент, зависящий от размеров поперечного сечения, определяемый по главе СНиП на бетонные и железобетонные конструкции гидротехнических сооружений);

?? = 1,75 - коэффициент для прямоугольного сечения;

W0 = hэ/6 - упругий момент сопротивления сечения эквивалентного массива шириной 1 м и высотой hэ (для глубин у причала до 11,5 м hэ = В/4; для глубин 13 м и более hэ = В/3);

В - длина эквивалентного массива, равная размеру фундаментной плиты в плоскости действия изгибающего момента; при расчете фундаментной плиты в направлении, перпендикулярном линии кордона, равна ширине основания сооружения, в направлении, параллельном линии кордона, - ширине фундаментной плиты.

Примечание. Армирование нижней и верхней зон фундаментной плиты в двух направлениях производится по изгибающим моментам, определенным по формуле (56) с учетом указаний пп. 8.7, 8.10 и 8.11 настоящей Инструкции.

11.5. Растягивающее усилие в анкерной тяге определяется как опорная реакция из расчета лицевой плиты в вертикальном направлении, при этом нагрузки учитываются в соответствии с указаниями пп. 10.4 и 11.1 (I случай).

11.6. Расчет элементов железобетонных конструкций на прочность и трещиностойкость лицевой и фундаментной панелей выполняется в соответствии с указаниями глав СНиП на бетонные и железобетонные конструкции гидротехнических сооружений, на бетонные и железобетонные конструкции и пп. 8.7, 8.8, 8.10 и 8.11 настоящей Инструкции.

11.7. Расчет анкерных устройств и деталей их крепления на устойчивость следует выполнять в соответствии с указаниями разд. 16 и прил. 3 к настоящей Инструкции, по прочности - по требованиям глав СНиП на стальные конструкции, на бетонные и железобетонные конструкции гидротехнических сооружений, на бетонные и железобетонные конструкции и пп. 8.7-8.11 настоящей Инструкции.

12. РАСЧЕТ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ УГОЛКОВОГО ТИПА С ВНУТРЕННЕЙ АНКЕРОВКОЙ

12.1. Расчет уголковых причальных сооружений с внутренней анкеровкой на устойчивость по схеме плоского сдвига и общую устойчивость, а также определение толщины постели и нормальных контактных напряжений выполняют по указаниям пп. 9.3-9.10 и 10.1-10.4.

12.2. Изгибающие моменты и поперечные силы, действующие в лицевой плите уголковой стенки с внутренней анкеровкой, определяют на основе расчетов, выполняемых в соответствии с указаниями пп. 10.1, 10.2, 10.4-10.6.

12.3. Усилия, действующие в фундаментной плите, допускается определять обоснованными методами расчета с учетом воздействия лицевой вертикальной плиты, анкерной тяги, пригрузки от грунта засыпки за стенкой, а также неравномерности планировки постели.

12.4. Растягивающее усилие в анкерной тяге определяется как опорная реакция на основе расчета лицевой плиты в вертикальном направлении. Изгибающий момент в анкерной тяге, возникающий под действием давления зависающего грунта, эксплуатационной нагрузки и собственного веса тяги, допускается определять обоснованными методами.

12.5. Расчет лицевой и фундаментной плит на прочность и трещиностойкость выполняется по главам СНиП на бетонные и железобетонные конструкции гидротехнических сооружений, на бетонные и железобетонные конструкции и пп. 8.7, 8.8, 8.10 и 8.11 настоящей Инструкции.

При этом лицевая плита в вертикальном направлении рассчитывается на внецентренное сжатие, в горизонтальном - на изгиб.

12.6. Анкерная тяга и ее крепления рассчитываются на прочность в соответствии с указаниями главы СНиП на стальные конструкции, а также п. 8.9 и прил. 3 к настоящей Инструкции.

13. РАСЧЕТ УГОЛКОВЫХ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ КОНТРФОРСНОГО ТИПА

13.1. Расчет уголковых стенок контрфорсного типа на плоский сдвиг и общую устойчивость, а также определение нормальных контактных напряжений и толщины постели выполняются по указаниям пп. 9.3-9.10 и 10.1-10.4.

13.2. При расчете лицевой плиты контрфорсной стенки в горизонтальном направлении (см. п. 10.5 настоящей Инструкции) расчетную эпюру активного давления следует определять как разность эпюры активного давления, построенной по указаниям пп. 8.20-8.24 и 10.2, и треугольной эпюры трения с вершиной на территории причала.

При расстоянии между контрфорсами в 4 м основание эпюры трения принимается равным 0,2 нижней ординаты эпюры активного давления, при расстоянии между контрфорсами 2 м - 0,3 нижней ординаты эпюры активного давления (рис. 14).

Расчет лицевой плиты при одном контрфорсе выполняется по схеме консольной балки, при двух контрфорсах - по схеме однопролетной балки с консолями.

По высоте сооружения рекомендуется выделять сечения плиты шириной 1 м с равномерной нагрузкой, средней интенсивности по расчетной эпюре распора для выделенного сечения.

13.3. Лицевая плита контрфорсной стенки в вертикальном направлении рассчитывается по схеме тавровой консольной балки на нагрузку от горизонтальной составляющей швартовного усилия, перпендикулярной кордону (учитывая указания п. 10.4), и на нагрузку от распора (с учетом указаний п. 10.2 настоящей Инструкции). Сбор нагрузок на контрфорс производится с ширины, равной сумме прилегающих полупролетов.

Рис. 14. Эпюры давления на лицевую стенку:

а - активного давления; б - трения; в - суммарная

Рис. 15. Схема учета неполноты контакта фундаментной плиты с основанием

13.4. Фундаментная плита рассчитывается с учетом неполноты контакта поверхности с постелью на суммарную нагрузку от реактивного давления постели снизу (нормальные контактные напряжения) и от пригрузки сверху от собственного веса конструкции и грунта засыпки, а также временных нагрузок.

Неполнота контакта компенсируется увеличением реактивных контактных напряжений от постели за счет условного исключения из расчета площади фундаментной плиты, равной 0,5lа, где а - ширина переднего выступа плиты (рис. 15 и рис. 16).

В этом случае краевые контактные напряжения определяются по формуле

(57)

где - то же, что в п. 9.4 настоящей Инструкции;

g - вертикальная составляющая равнодействующей всех нагрузок, действующих по ширине b (см. также п. 9.2 настоящей Инструкции);

F - площадь плиты в контуре ABCDEF (см. рис. 15), по которой осуществляется контакт с постелью;

Мx и Му - моменты от вертикальной составляющей равнодействующей всех нагрузок относительно соответствующих осей, проходящих через центр тяжести сечения фундаментной плиты в контуре ABCDEF (см. рис. 15);

Wx и Wу - моменты сопротивления площади подошвы фундаментной плиты в контуре ABCDEF относительно соответствующих осей.

Рис. 16. Схема расчета фундаментной плиты сборной уголковой контрфорсной стенки:

а - план сборного блока уголковой контрфорсной стенки; б - результирующая эпюра нагрузок на фундаментную плиту; в - схема работы переднего выступа фундаментной плиты; г - схема работы тыловой консоли фундаментной плиты; 1 - передний выступ фундаментной плиты; 2 - лицевая плита; 3 - контрфорс; 4 - тыловая консоль фундаментной плиты

При проведении статического расчета фундаментной плиты (см. рис. 16, а и в) передний выступ следует рассчитывать в направлении, перпендикулярном линии кордона, как консольную балку; тыловую часть плиты - в направлении, параллельном линии кордона: при одном контрфорсе - как консольную балку, при двух контрфорсах - как балку на двух опорах с консолями. При этом следует выделять сечения плиты шириной 1 м и загружать нагрузкой средней интенсивности по суммарной эпюре давления (см. рис. 16, б и г).

13.5. Расчеты лицевой плиты, контрфорса и фундаментной плиты на прочность и трещиностройкость следует выполнять в соответствии с указаниями глав СНиП на бетонные и железобетонные конструкции гидротехнических сооружений, на бетонные и железобетонные конструкции и пп. 8.7, 8.8, 8.10 и 8.11 настоящей Инструкции.

Примечание. Для фундаментной плиты следует принимать двойное армирование, так как она рассчитывается по двузначной эпюре давления (см. рис 16, б).

14. РАСЧЕТ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ ИЗ МАССИВОВОЙ КЛАДКИ

14.1. При расчете причальных сооружений из массивовой кладки следует рассматривать пять случаев загружения территории (рис. 17):

Рис. 17. Расчетная схема причального сооружения из массивовой кладки(римскими цифрами показаны различные случаи загружения):

1 - отметка кордона, 2 - линия кордона; 3 - колея портала; 4 - обратный фильтр; 5 - каменная разгрузочная призма; 6 - каменная постель; 7 - отметка дна, а - величина, которая принимается по нормам технологического проектирования морских портов

I случай - временная нагрузка располагается за пределами стенки, начиная от тылового обреза разгрузочной платформы. При таком расположении нагрузки выполняются расчеты на устойчивость по схеме плоского сдвига по контакту стенки с постелью, совместно с постелью и по швам кладки, проверяется положение равнодействующей нагрузок (эксцентриситет) по подошве стенки и в швах кладки, а также в необходимых случаях - устойчивость на опрокидывание (на поворот вокруг переднего ребра);

II случай - временная нагрузка располагается над тыловой частью сооружения и распределяется на 1/3 ширины массива предпоследнего курса кладки. Указанный случай является определяющим при проверке растягивающих нормальных напряжений со стороны акватории в шве основания верхнего курса массивов;

III случай - временная нагрузка располагается над стенкой до линии кордона или линии возможного загружения по технологическим условиям. В указанном расчетном случае определяются максимальные нормальные контактные напряжения в каменной постели на контакте с основанием стенки и в грунте основания на контакте с каменной постелью. Кроме того, определяются толщина постели, а также усилия в лицевой стенке надстройки при расчете ее по прочности и раскрытию трещин;

IV случай - временная нагрузка располагается за пределами надстройки, над тыловой частью сооружения. Указанный расчетный случай является определяющим для расчета устойчивости надстройки;

V случай - по п. 9.10 при расчете на общую устойчивость по круглоцилиндрическим поверхностям скольжения (сдвига) (см. рис. 10).

14.2. Распорное давление на массивную стенку от собственного веса грунта и временных нагрузок определяется в соответствии с указаниями пп. 8.20-8.24, с учетом трения материала засыпки по тыловой плоскости стенки (по плоскости восприятия распора). При этом следует иметь в виду, что:

а) угол трения ?? материала засыпки по грунту в пределах высоты надстройки принимается равным углу ??3 внутреннего трения материала засыпки;

б) угол трения ?? каменной наброски по тыловой поверхности бетонных массивов в пределах высоты разгрузочной призмы принимается равным 0,5 ??к (??к - угол внутреннего трения каменной наброски);

в) угол трения ?? материала засыпки по тыловой поверхности бетонных массивов (из-за ограниченного простирания слоя каменной отсыпки) принимается равным 0,5 ??3.

14.3. В пределах высоты надстройки при расчете ее на устойчивость угол наклона ?? плоскости восприятия распора в грунте засыпки и соответствующий ему угол обрушения ?? определяются в соответствии с указаниями п. 8.23 настоящей Инструкции.

Примечание. При надстройках высотой до 3 м и временной нормативной нагрузке qн ?? 4 тс/м2 плоскость восприятия распора вертикальна и угол обрушения ?? вычисляется при ?? = 0 и S?? = 0.

14.4. В пределах каменной разгрузочной призмы эпюра активного давления строится по указаниям п. 8.24. Ординаты ????i дополнительного давления от пригрузки грунта из-за неполноты простирания каменной наброски (рис. 18) рассчитываются по формуле (20). Тогда ординаты ????i равны:

в точке А??

(58)

в точке Б??

(59)

в точке A

(60)

в точке Б

(61)

Здесь

(62)

(63)

где ??а.г и ??а.к - коэффициенты активного давления соответственно грунта и камня.

Остальные обозначения принимаются по рис. 18.

Рис. 18. Расчетная схема определения дополнительного активного давления при наличии каменной разгрузочной призмы

14.5. При расчете сооружения на устойчивость по основанию и швам кладки горизонтальную составляющую швартовного усилия, нормальную к линии кордона, следует переносить в основание надстройки, учитывая возникающий при этом момент от пары сил.

Силу и момент от пары сил следует распределять равномерно по всей длине секции, учитывая, что на 1 пог. м причала действуют:

сила

(64)

момент от пары сил

(65)

Здесь - поперечная горизонтальная составляющая швартовного усилия, определяемая по главе СНиП на нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов);

L - длина секции;

Z - плечо пары сил, равное расстоянию, на которое переносится сила (рис. 19).

Рис. 19. Поперечный разрез и фасад секции причальной набережной из массивовой кладки

14.6. При расчете устойчивости надстройки на сдвиг (скольжение) равнодействующая горизонтальных составляющих нагрузок определяется по формуле

(66)

где - продольная горизонтальная составляющая швартовного усилия, определяемая в соответствии с главой СНиП на нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов);

- то же, что в п. 14.5 настоящей Инструкции;

- горизонтальная составляющая активного давления грунта с учетом временных нагрузок на секцию длиной L.