6.5.2 В пределах отдельно взятой лаборатории ее дисперсия носит название внутрилабораторной и ее выражают в виде

Var(e) = σW2.(8)

6.5.3 Можно ожидать, что σW2 будет иметь разные значения в разных лабораториях вследствие таких различий, как различия в квалификации операторов, однако в настоящем стандарте допускается, что для должным образом стандартизованного метода измерений такие различия между лабораториями должны быть невелики и это может быть оправданием для установления общего значения внутрилабораторной дисперсии для всех лабораторий, пользующихся этим методом. Это общее значение, которое оценивается средним значением внутрилабораторных дисперсий, называется «дисперсией повторяемости» и ее обозначают σr2:

(9)

Данное среднее значение берут по всем лабораториям, принимавшим участие в эксперименте по оценке точности и оставшимся после исключения выбросов.

7 Выбор условий измерений

7.1 При применении метода измерений в пределах лаборатории возможны многие условия измерений, а именно:

a) условия повторяемости (четыре фактора неизменны);

b) несколько промежуточных условий прецизионности с одним изменяющимся фактором;

c) несколько промежуточных условий прецизионности с двумя изменяющимися факторами;

d) несколько промежуточных условий прецизионности с тремя изменяющимися факторами;

e) промежуточные условия прецизионности с четырьмя изменяющимися факторами.

В стандарте на метод измерений нет необходимости (или даже возможности) устанавливать все возможные показатели прецизионности, хотя стандартное отклонение повторяемости должно определяться всегда. При выборе промежуточных мер прецизионности обычно встречающиеся условия должны определяться общей коммерческой практикой, и часто бывает достаточно задать всего лишь один соответствующий промежуточный показатель прецизионности с подробным описанием конкретных условий измерений, ассоциирующихся с ним. Значения влияющих факторов в условиях выполнения измерений, которые могут изменяться, должны быть точно определены; в частности, для промежуточных условий прецизионности с различием по фактору «время» должен быть задан практический средний интервал между последовательно выполняемыми измерениями.

7.2 Предполагается, что стандартизованный метод измерений будет иметь наименьшую систематическую погрешность и что эта систематическая погрешность, присущая самому методу, должна быть компенсирована техническими средствами. Поэтому в настоящем стандарте рассматривают только систематическую погрешность, обусловленную условиями измерений (см. 7.1).

7.3 Изменение в факторах условий измерений (время, калибровка, оператор и оборудование) по сравнению с условиями повторяемости (т.е. от состояния 1 в состояние 2 согласно таблице 1) увеличит изменчивость результатов измерений. Однако ожидаемое среднее значение ряда результатов измерений будет иметь меньшую систематическую погрешность по сравнению с систематической погрешностью в условиях повторяемости. Увеличение стандартного отклонения для промежуточных условий прецизионности можно преодолеть, не полагаясь на единичный результат измерений, а используя среднее значение нескольких результатов измерений в качестве окончательно приводимого результата.

7.4 На практике выбор факторов, влияние которых подлежит изучению при стандартизации метода измерений, будет зависеть как от желаемой прецизионности (стандартного отклонения) окончательного результата, так и от стоимости выполнения измерений.

8 Внутрилабораторное исследование и анализ промежуточных показателей прецизионности

8.1 Простейший подход

Простейший метод оценки стандартного отклонения промежуточной прецизионности в пределах одной лаборатории состоит в отборе одной пробы (или, для испытаний с разрушением образца, одного комплекта предположительно идентичных образцов) и выполнении серии из n измерений с изменением фактора(ов) между ними. Рекомендуется, чтобы n было не менее 15. Это может быть неприемлемо для лаборатории, и данный метод оценки промежуточных показателей прецизионности в пределах лаборатории не может быть признан эффективным в сравнении с другими процедурами. Анализ элементарен, однако и он может быть полезен для исследования промежуточной прецизионности с различием по фактору «время» путем выполнения последовательных измерений на одном и том же образце последовательно день за днем либо для исследования влияния фактора «калибровка» между измерениями.

Для идентификации потенциальных выбросов рекомендуется построить график в функции номера измерения k, где yk представляет собой k-й результат измерений из п повторных результатов, а - среднее значение из n повторных результатов. Более формальная проверка выбросов состоит в применении критерия Граббса, как это представлено в 7.3.4 ГОСТ Р ИСО 5725-2.

Оценка стандартного отклонения промежуточной прецизионности при M изменяющихся факторов выражается в виде

(10)

где в скобках должны быть проставлены символы, обозначающие промежуточные условия прецизионности.

8.2 Альтернативный метод

8.2.1 Альтернативный метод подразумевает t групп измерений, каждая из которых включает в себя n повторных результатов. Например, в одной лаборатории испытывают t материалов, после чего факторы промежуточной прецизионности изменяют и t материалов испытывают повторно, при этом процедуру повторяют до тех пор, пока не будет иметься в наличии n результатов измерений по каждому из t материалов. Каждая группа из n результатов измерений должна быть получена на одном идентичном образце или пробе (или на комплекте предположительно идентичных образцов или проб в случае испытаний с разрушением образцов), но при этом не требуется, чтобы материалы были идентичными. Необходимо только, чтобы все t материалов находились в таком диапазоне уровней испытаний (значений испытуемого параметра), в пределах которого можно использовать одно значение стандартного отклонения промежуточной прецизионности при M изменяющихся факторах. Рекомендуется, чтобы значение t(n - 1) было не менее 15.

Пример

Один оператор выполняет одно измерение на каждом из t материалов, после чего это повторяет второй оператор, а возможно, и третий оператор, и так далее, что позволяет рассчитать sI(O).

8.2.2 Для идентификации потенциальных выбросов рекомендуется построить график в функции номера материала j, где yjk представляет собой k-й результат измерений, а - среднее значение n результатов по j-му материалу. Более формальная проверка выбросов состоит в применении критерия Граббса, как это представлено в 7.3.4 ГОСТ Р ИСО 5725-2, либо для каждой группы в отдельности, либо для всех tn результатов измерений в совокупности.

Оценка стандартного отклонения промежуточной прецизионности при M изменяющихся факторах sI( ) в таком случае выражается в виде

(11)

Для n = 2 (т.е. для двух результатов измерений по каждому материалу) формула упрощается, см. (12).

(12)

8.3 Влияние условий измерений на окончательный результат

8.3.1 Полезность средних значений лимитируется тем, что математическое ожидание различно для той или иной комбинации факторов - времени, калибровки, оператора и оборудования - даже в случае изменения только одного из них.

При химическом анализе или физических испытаниях значение фиксируется в качестве окончательно приводимого результата. В торговле сырьем и материалами этот окончательно приводимый результат часто используют для оценки качества сырья и материалов, и он значительно влияет на цену продукции.

Пример

В международной торговле углем партия груза часто может превышать 70000 т, а зольность окончательно определяют в испытуемой навеске массой всего лишь 1 г. В договоре в особых условиях оговаривают, что расхождение в 1 % абсолютного содержания золы соответствует 1,5 долларов США за 1 т угля, поэтому расхождение в 1 мг при взвешивании золы на аналитических весах соответствует 0,1 % зольности, или 0,15 долларов США за 1 т, что для такой массы груза приводит к разнице в 10500 долларов США (0,1 ?? 1,5 ?? 70000).

8.3.2 Следовательно, окончательно приводимый результат химического анализа или физических испытаний должен быть достаточно точным, высоконадежным и, главное, универсальным и воспроизводимым. Окончательно приводимый результат, который может гарантироваться лишь в условиях выполнения измерений конкретным оператором, на конкретном оборудовании или в определенное время, может оказаться недостаточно удовлетворительным с коммерческой точки зрения.

9 Межлабораторное исследование и анализ промежуточных показателей прецизионности

9.1 Основные исходные положения

Оценка промежуточных показателей прецизионности путем межлабораторных исследований исходит из предпосылки, заключающейся в том, что влияние отдельного фактора одинаково во всех лабораториях, т.е., например, смена операторов в одной лаборатории имеет тот же самый эффект, что и смена операторов в другой лаборатории, или изменение, обусловленное фактором времени, одинаково во всех лабораториях. Если данная предпосылка нарушается, концепция промежуточных показателей прецизионности теряет смысл, так же, как лишаются смысла процедуры, предлагаемые в последующих разделах для их оценки. Нужно уделять повышенное внимание выбросам (речь идет не обязательно об исключении выбросов), так как это поможет обнаружить отклонения от исходных предпосылок, что необходимо при формировании информации от всех лабораторий для последующих расчетов. Одним из действенных приемов обнаружения потенциальных выбросов является графическое изображение результатов измерений как функции различных уровней факторов или различных лабораторий участников исследования.

9.2 Простейший подход

Если материал на q уровнях рассылается в p лабораторий, каждая из которых выполняет измерения на каждом из q уровней с изменением фактора(ов) промежуточной прецизионности в интервалах между каждыми из n измерений, то анализ проводят с помощью того же метода расчета, который изложен в ГОСТ Р ИСО 5725-2, за исключением того, что вместо стандартного отклонения повторяемости оценивают стандартное отклонение промежуточной прецизионности.

9.3 Вложенные эксперименты

Следующим способом оценки промежуточных показателей прецизионности является проведение более сложных экспериментов. Это могут быть полностью или ступенчато вложенные эксперименты (определения данных терминов см. в ИСО 3534-3 [4]). Преимущество использования экспериментов вложенного типа состоит в том, что имеется возможность в одно время и в одном межлабораторном эксперименте оценить не только стандартные отклонения повторяемости и воспроизводимости, но и одно или большее число стандартных отклонений промежуточной прецизионности. Существуют, однако, определенные предостережения, которые должны приниматься во внимание, и они будут разъяснены в 9.8.

9.4 Полностью вложенный эксперимент

Схематическое изображение полностью вложенного эксперимента на определенном уровне испытаний представлено на рисунке 1.

Посредством выполнения трехфакторного полностью вложенного эксперимента сообща в нескольких лабораториях может быть получен один промежуточный показатель прецизионности в одно и то же время со стандартными отклонениями повторяемости и воспроизводимости, т.е. могут быть оценены σ(0), σ(1) и σr. Аналогично четырехфакторный полностью вложенный эксперимент может быть использован для получения двух промежуточных показателей прецизионности, т.е. могут быть оценены σ(0), σ(1) σ(2) и σr.

Подстрочные индексы i, j и k при y на рисунке 1a) для трехфакторного полностью вложенного эксперимента представляют, например, лабораторию, день проведения эксперимента и номер результата для n измерений, проведенных в условиях повторяемости для каждой комбинации i и j.

Подстрочные индексы i, j, k и l при y на рисунке 1b) для четырехфакторного полностью вложенного эксперимента представляют, например, лабораторию, день проведения эксперимента, оператора и номер результата для n измерений, проведенных в условиях повторяемости для каждой комбинации i, j, k.

Рисунок 1 - Схемы трех- и четырехфакторных полностью вложенных экспериментов

Анализ результатов многофакторного полностью вложенного эксперимента осуществляют по методике «анализ дисперсии» (ANOVA) отдельно для каждого уровня испытаний, он детально описан в приложении В.

9.5 Ступенчато вложенный эксперимент

Схематическое изображение ступенчато вложенного эксперимента для определенного уровня испытаний представлено на рисунке 2.

Рисунок 2 - Схема четырехфакторного ступенчато вложенного эксперимента

Трехфакторный ступенчато вложенный эксперимент требует от каждой лаборатории i получения трех результатов измерений. Результаты измерений yi1 и yi2 должны быть получены в условиях повторяемости, а yi3 - при каком-либо из промежуточных условий прецизионности с M изменяющимися факторами (M = 1, 2 или 3), например при условии различия во времени (посредством получения уi3 в другой день по сравнению с днем, когда были получены yi1 и yi2).

При четырехфакторном ступенчато вложенном эксперименте результат yi4 должен быть получен при другом промежуточном условии прецизионности с дополнительным изменяющимся фактором, например при условии различия по факторам (время + оператор) посредством смены дня проведения эксперимента и оператора.

Опять же, анализ результатов многофакторного ступенчато вложенного эксперимента осуществляют по методике «анализ дисперсии» (ANOVA) отдельно для каждого уровня испытаний, и он детально описан в приложении С.

9.6 Распределение факторов в схеме вложенного эксперимента

Факторы в схеме вложенного эксперимента распределяют так, чтобы факторы, испытывающие по большей части влияние систематических эффектов, располагались на высших рангах (0, 1, …), а факторы, подверженные в большей мере влиянию случайных эффектов, располагались на низших рангах; самым низшим фактором считают остаточную вариацию (повторы). Например, в четырехфакторной схеме (см. рисунки 1b и 2) фактор 0 мог бы быть лабораторией, фактор 1 - оператором, фактор 2 - днем выполнения измерения, а фактор 3 - количеством параллельных определений. Это может оказаться несущественным в случае полностью вложенного эксперимента по причине его симметрии.