2.25. На боковых поперечных гранях плит предусматривают стыковые соединения, конструкция которых зависит от величины колесной нагрузки, вида основания и конструкции формы или опалубки. Некоторые из конструкций стыковых соединений для предварительно-напряженных плит показаны на рис. 5, для ненапряженных плит — на рис. 6.

Рис. 5. Стыковые соединения для предварительно-напряженных плит:

а — соединение из свариваемых скоб с прочностью стыков 20 кН; б — то же, с увеличением сечения сварного шва, 40 кН; в — из скоб, соединяемых двумя промежуточными шпунтовыми элементами с омоноличиванием раствором, 70 кН; г — несвариваемое из трех скоб, 70 кН; д — из скобы и паза в бетоне соседней плиты, 60 — 70 кН; е ?? из свариваемых пластин, имеющих анкерные стержни, 130 кН при податливости 2 мм

Рис. 6. Варианты стыковых соединений для ненапряженных плит:

а, б — на углах плит, изготавливаемых в матричных формах (с неоткидными бортами); в, г, д — на боковых гранях плит, изготавливаемых в формах с неоткидными бортами

На боковых продольных гранях плит предусматривают монтажно-стыковые устройства в виде горизонтальных или вертикальных скоб.

2.26. Для повышения долговечности сборного покрытия на поворотах, в местах примыкания или уширения целесообразно применять “доборные” плиты или плиты-вставки. Эти плиты изготавливают в тех же формах, что и плиты основного размера. Часть монтажных скоб может быть установлена на поверхности этих плит или на их боковых гранях, примыкающих к бортам формы. Монтажные и стыковые устройства при этом сохраняются.

2.27. Основания под сборные покрытия могут устраиваться различных типов (рис. 7). Конструкция основания определяется по расчету.

Рис. 7. Виды оснований под сборное покрытие: 1 — песчаное; 2 — то же, со слоем геотекстиля (СНМ); 3 — песчаное, в том числе с СНМ, с прокладками под углами и торцами плит; 4 — цементогрунтовое; 5 — песчаное с продольными полосами из цементогрунта или сухой цементопесчаной смеси; 6 — из сухой цементопесчаной смеси; 7 — из шлака или шлама; 8 — из нефтегрунта, нефтецементогрунта или грунта с добавкой отработанных буровых растворов; 9 — из сборных, в том числе некондиционных плит

Швы в покрытии можно заполнять в нижней части или на всю высоту раствором, в верхней части — мастикой. Для большей сохранности кромок плит, работающих на первой стадии при двухстадийном строительстве, швы на первой стадии должны быть заполнены песком.

3. РАСЧЕТ ЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД

3.1. Дорожные одежды рассчитывают с учетом состава транспортного потока перспективной интенсивности движения к концу срока службы, грунтовых и природно-климатических условий.

Расчет производят в следующих случаях:

при проектировании дорожных одежд;

при определении возможности разового пропуска тяжелых нагрузок по существующему покрытию;

при определении рациональности новых конструктивных или технологических решений.

Расчет выполняют по предельным состояниям, определяющим потерю работоспособности того или иного элемента конструкции, на основании расчетных схем, используя нормируемые расчетные параметры.

3.2. Расчет ведется путем проверок предварительно назначенной конструкции дорожной одежды:

по прочности верхних слоев дорожной одежды;

по прочности и устойчивости земляного полотна и слоев основания на сдвиг и по накоплению уступов и поперечных швах покрытия;

по устойчивости и продольном направлении покрытия в жаркое время года, по прочности стыковых и монтажных соединений;

по устойчивости дорожной одежды к воздействию морозного пучения;

по способности дренирующего слоя основания отводить влагу в весенний период.

Расчетом определяются толщины покрытия и слоев основания, расстояние между поперечными швами, количество штырей в швах расширения и сжатия.

3.3. Исходные данные для расчета дорожной одежды включают:

параметры дороги (категория, ширина проезжей части, срок службы дорожной одежды до капитального ремонта);

параметры движения (интенсивность, нагрузка);

параметры земляного полотна и условия его работы (тип местности, разновидности грунтов, уровень грунтовых вод);

дорожно-климатическую зону.

3.4. Жесткие дорожные одежды рассчитывают с учетом надежности (вероятности безотказной работы конструкции в течение намеченного срока эксплуатации), принимаемой в соответствии с табл. 5.

Таблица 5

Интенсивность расчетной нагрузки, ед./сут.

Уровень надежности

Коэффициент прочности Кпр

Более 1000

0,95

1,00

500 — 1000

0,90

0,94

Менее 500

0,80

0,87

Расчетные нагрузки

3.5. Покрытие рассчитывают на воздействие расчетной колесной нагрузки Р, которая определяется умножением нормативной нагрузки на опору (колесо) Рк на коэффициент динамичности т:

Р = Рк ?? mД, (1)

а для промышленных дорог, где наблюдаются регулярные перегрузки автотранспорта, с дополнительным учетом коэффициента перегрузки mnr:

P = Pк ?? mД (2)

Для дорог общей сети Рк = 50 кН, mД = 1,3. Для промышленных дорог Рк определяется на основе ожидаемого состава транспортных средств, но не менее 50 кН, в период расчетного состояния земляного полотна. Более высокая нагрузка принимается в расчет, если она превышает нормативную на 20 % при интенсивности более 5 % общей перспективной интенсивности.

Для дорог с интенсивностью движения расчетной нагрузки 500 ед./сут и менее величина Рк принимается на основе ожидаемого состава транспортного потока, но не менее нагрузки на колесо от воздействия построечного транспорта и дорожно-строительных машин (кранов, трейлеров и пр.).

Для нефтепромысловых дорог со сборным покрытием mД = 1,25 и mnr = 1,25.

3.6. Все полосы проезжей части и боковые укрепленные полосы проектируют на одну и ту же нагрузку. Исключением являются полосы дорог с ограничениями по условиям движения по направлениям (дороги карьеров, подъездов к промышленным и строительным объектам).

3.7. Расчетная повторность нагружения Npt определяется по формуле

, (3)

где Nпр — число проходов автомобилей с приведенной нагрузкой на расчетной полосе движения в первый год эксплуатации;

; (4)

fпол — коэффициент, учитывающий число полос движения и распределение транспортного потока по ним (табл. 6); для боковых укрепительных полос fпол = 0,01; Кi — коэффициент приведения автомобиля с нагрузкой Pi к нормативной Рк (рис. 8);

Рис. 8. График для определения Ki в зависимости от Pi;

?? ?? ?? с учетом трехосных автомобилей

; (5)

Ni — число проходов автомобилей с нагрузкой (весом) Pi; nc — количество дней в году с положительной температурой воздуха; q — знаменатель геометрической прогрессии, описывающей ежегодный прирост интенсивности движения; Т — срок службы покрытия до капремонта (см. п. 1.6):

Таблица 6

Число полос движения

Значения fпол для полосы, считая справа по направлению движения

1-й

2-й

3-й

1

1,00

??

??

2

0,55

??

??

3

0,50

0,50

??

4

0,35

0,20

??

6

0,30

0,20

0,01

3.8. Если на стадия проектирования известны только срок службы Т, категория дороги и соответствующая ей общая суточная интенсивность движения Nc на полосу, достигаемая к сроку Т, и постоянная в течение этого срока, а также дорожно-климатическая зона, то расчетная повторность нагружения определяется по формуле

Npt = TKN ?? Nc ?? nc, (6)

где KN — коэффициент перехода от общей интенсивности к интенсивности расчетной нагрузки (автомобиля); для дорог общей сети KN = 0,25, для промышленных, нефтепромысловых и внутрипромысловых (сельских) дорог KN = 0,40.

Если исходными являются общие интенсивности движения по полосе к началу (Nнс) и концу (Nкс) срока эксплуатации покрытия, то расчетная повторность нагружения определяется следующим образом:

. (7)

Расчет монолитных цементобетонных покрытий

3.9. Расчет проводят путем проверки прочности покрытия по формуле

(8)

где Кпр — коэффициент прочности, определяемой в зависимости от категории дороги по табл. 7; — расчетная прочность бетона на растяжение при изгибе, определяемая по обязательному приложению 1; ??pt — напряжения растяжения при изгибе, возникающие в бетонном покрытии от действия нагрузки, с учетом перепада температуры по толщине плиты.

Напряжения растяжения при изгибе определяют по одной из двух расчетных схем, учитывающих условия контакта плиты с основанием и место расположения нагрузки.

Первая расчетная схема применяется для определения толщины покрытия при условии гарантированной устойчивости земляного полотна и отсутствия неравномерных осадок или выпучивания; характеризуется наличием полного контакта плит с основанием под всей площадью плиты. Расчетное место приложения нагрузки в дорожном покрытии — продольный внешний край в центре по длине плиты.

Вторая расчетная схема применяется для определения расстояния между поперечными швами, а также толщины плит в особых условиях для дорог низких категорий при заданной их длине на участках с ожидаемыми неравномерными осадками или неравномерным пучением земляного полотна.

3.10. По первой расчетной схеме напряжения ??pt (МПа) определяются, исходя из решений теории упругости, по следующей аппроксимирующей зависимости, отражающей наличие контакта плиты с основанием:

, (9)

где Р — расчетная нагрузка, кН; Км — коэффициент, учитывающий влияние места расположения нагрузки; для неармированных покрытий Км = 1,5; для покрытий с краевым армированием или площадок с расположением полос наката не ближе чем 0,8 ширины внешнего продольного края покрытия — Км = 1,0 для продольного направления и Км = 1,5 для поперечного; Кусл — коэффициент, учитывающий условия работы; Кусл = 0,66; Кшт — коэффициент, учитывающий влияние штыревых соединений на условия контактирования плит с основанием; при наличии в поперечных швах штырей Кшт = 1, при отсутствии штырей Кшт = 1,05; h — толщина плиты; Kt — коэффициент, учитывающий влияние температурного коробления плит, определяемый по табл. 7;

Таблица 7

Дорожно-климатическая

Значения Кt, при толщине плиты, см

зона

16

17

18

19

20

21

22

23

24

25

26

II

0,95

0,93

0,90

0,87

0,85

0,83

0,80

0,77

0,73

0,70

0,67

III

0,95

0,93

0,90

0,87

0,84

0,92

0,79

0,76

0,72

0,69

0,66

IV

0,94

0,92

0,89

0,86

0,84

0,82

0,78

0,75

0,71

0,68

0,65

V

0,94

0,92

0,89

0,85

0,83

0,81

0,77

0,74

0,70

0,66

0,63

R — радиус отпечатка колеса;

, см (10)

qш — давление в шинах, принимаемое равным 0,6 МПа; lу — упругая характеристика плиты, см;

; (11)

Е и ?? — модуль упругости и коэффициент Пуассона бетона, определяемые по обязательному приложению 2; ??о — коэффициент Пуассона основания; Еэо — эквивалентный модуль упругости основания; модуль упругости материалов основания определяются по обязательным приложениям 1 и 2.

3.11. При второй расчетной схеме при опирании на основание в ее центральной части по длине полудлина плиты А (см) определяется по формуле

A = 4(R + R ?? Bh2/60KcP), (12)

а толщина плиты h (см) на основе формул (8) и (12)

(13)

где Р в кН, h, А и В в см; В — полуширина плиты см; А ?? В, Кс — коэффициент скорости потери ровности основания при ожидаемой общей просадке основания (земляного полотна) более 15 см Кс = 1,2, в остальных случаях — Кс = 1.

3.12. Необходимость устройства швов расширения определяется исходя из допустимых температурных напряжений сжатия (МПа), которые для оценочных расчетов можно принять равными:

(14)

или

, (15)

где у — плотность материала плиты, т/м3; h — толщина плиты, м; At = 19 МПа/м.

Из условия сохранения прочности бетона в зоне швов не должно превышать 2 Ввtв.

3.13. Из условия прочности швы расширения устраивают, если допустимые напряжения будут меньше фактических (МПа), определяемых по формуле

, (16)

где с — коэффициент линейной температурной деформации бетона, 1/°С; с = 0,00001 1/°С; Тмакс, Тисх — максимальная и исходная температура бетона в середине по толщине плиты, °С (см. табл. п. 2.12 обязательного приложения 2).

3.14. Расстояние Lpaсш (м) между швами расширения определяется по формуле

, (17)

где ??пр — деформация сжатия прокладки шва расширения, м;

??пр = Впр ?? ??пр/Епр, (18)

Впр — ширина прокладки, м; Епр — модуль упругости прокладки, МПа; для деревянных прокладок Епр = 8 МПа; ????пр — обжатие шва расширения (напряжение при сжатии) МПа; для деревянных прокладок мягких пород ????пр =2 МПа; hnp — высота прокладки, м.