По таблице 2 можно выбрать комбинации работоспособных элементов и записать выражение для ВБР системы с помощью противоположных событий

, (14)

Из выражения (14) следует, что

RS= (1 - RB1)(1 - RB2)(1 - RC1) RC2RA+ (1 - RB1)(1 - RB2) RC1(1 - RC2)RA+,…,+ RB1RB2RC1RC2RA

Выражение (14) содержит 19 событий, соответствующих комбинациям работоспособности системы, которые необходимо суммировать, чтобы получить искомый результат. Из приведенного примера легко заметить, что выражение для ВБР, полученное на основе Булева подхода, очень скоро может стать необозримым.

8.2 Модели с общими блоками

В структурной схеме надежности систем, рассмотренных в разделе 7, ни один из блоков не используется более одного раза. Это может быть удобно при построении структурной схемы надежности системы, изображенной на рисунке 14. Например, элементы С и D могли бы быть функционально подобными элементами, действующими по отношению друг к другу как дублирующие элементы, но элемент D может быть подключен только элементом В. учитывая, что элемент В подает питание к С и D. На рисунке 14 изображено не только физическое расположение элементов, но и структурная схема надежности. В такой структурной схеме важно направление стрелок.

Рисунок 14

Работоспособность системы в вышеуказанном случае может быть представлена в соответствии со структурной схемой надежности, в которой некоторые блоки входят более одного раза, как изображено на рисунке 15. Эта структурная схема была получена на основе структурной схемы надежности системы, приведенной на рисунке 14, на основе его анализа и выделения пар элементов, одновременный отказ которых приводит к отказу системы. Таким образом, рисунок 15 представляет собой последовательную комбинацию таких пар элементов.

Рисунок 15

При работе со структурной схемой подобного типа неправильно обрабатывать блоки как независимые пары и затем перемножать ВБР пар. Вместо этого необходимо использовать любой из методов, приведенных в 8.1.1 и 8.1.2.

Например, используя метод, описанный в 8.1.1, получаем:

RS= Pr(SS½B работоспособный) Рr(В работоспособный) + Pr(SS½B отказавший) Pr(В отказавший),

где Pr(SS½В работоспособный) задается в соответствии со структурной схемой надежности, включающей параллельные блоки С и D поскольку

Pr (SS½B отказавший) = Pr(SS½B отказавший½С работоспособный) ´ Рr(С работоспособный) + Pr(SS½B отказавший½С отказавший) Рr(С отказавший) = RARC+ 0

Следовательно, RS= (RD+ RC- RDRC) RB+ RARC(1 - RB) = RARC+ RBRC+ RBRD- RARBRC- RDRBRC.

На рисунках 14 и 15 представлены различные способы моделирования одного и того же определения отказа. А именно, отказ системы происходит тогда, когда отказали блоки A и B или B и C, или C и D. Другими словами, Булевы выражения для описания работоспособности системы SS или отказа системы C будут одними и теми же для обоих рисунков 14 и 15:

Применяя метод, приведенный в 8.1.2, получаем данные, приведенные в таблице 3.

Таблица 3

Элемент

Система

A

B

C

D

1

1

1

1

1

1

1

1

0

1

1

1

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

0

1

1

0

0

1

0

1

0

0

0

0

0

1

1

1

1

0

1

1

0

1

0

1

0

1

1

0

1

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

Примечание- 1 - работоспособный элемент, 0 - отказавший элемент.

При помощи таблицы 3 можно записать следующее выражение для ВБР

RS= RARBRCRD+ RARBRC(1 - RD) + RARB(1 - RC)RD+ RA(1 - RB)RCRD+ RA(1 - RB)RC(1 - RD) + (1 - RA)RBRCRD+ (1 -RA)RBRC(1 - RD) + (1 - RA)RB(1 - RC)RD

Это выражение можно упростить до вида

R'S= RARB+ RBRD+ RBRC- RARBRC- RDRBRC

Другой метод, использующий общие блоки, состоит в следующем: сначала игнорируют факт, что некоторые блоки появляются более одного раза, и записывают выражение для ВБР R'S

R'S= (RA+ RB- RARB)(RB+ RC- RBRC)(RC+ RD- RCRD)

Если скобки перемножить и члены, подобные RARBRC2 и RDRBRC2, заменить на Булевы эквиваленты RARBRC и RDRBRC соответственно, тогда выражение для ВБР системы RS можно упростить до следующего

RS= RARC+ RBRD+ RBRC- RARBRC- RDRBRC

8.3 Модели т из п (неидентичные элементы)

Рисунок 16

Метод определения ВБР, приведенный в 7.2.3, в этом случае не применим. Как пример рассмотрим систему, представленную структурной схемой надежности, изображенной на рисунке 16.

ВБР такой системы определяют методами, приведенными в 8.1.1 или 8.1.2. Метод, приведенный в 8.1.2, требует 32 входа. При этом вероятность отказа системы FS может быть определена по следующей формуле

FS= (1 - RA)(1 - RB)(1 - RC)(1 - RD)(1 - RE) + (1 - RA) (1 - RB) (1 - RC) (1 - RD) RE+ (1 - RA)(1 - RB)(1 - RC) RD(1 - RE) + (1 - RA)(1 - RB)RC(1 - RD)(1 - RE) + (1 - RA)RB(1 - RC)(1 - RD)(1 - RE) + RA(1 - RB)(1 - RC)(1 - RD)(1 - RE)

ВБР системы определяют по формуле

RS= (1 - FS).

Примечание - В настоящее время появились более эффективные методы определения ВБР для рассматриваемого случая.

8.4 Метод редукции

Иногда структурные схемы выглядят очень сложными. Но исследование позволяет сгруппировать блоки в более управляемые элементы; такие элементы должны быть статистически независимыми. Это означает, что никакие два (или более) управляемые элемента не могут содержать блок с одинаковым обозначением. Пример подобной структурной схемы изображен на рисунке 17.

Рисунок 17

Приведенная на рисунке 17 структурная схема может быть упрощена до изображенной на рисунке 18а путем оценки надежности четырех блоков X1, Х2, Х3, Х4 в соответствии с 8.1, 7.2.3, 8.2 и 7.2.3 соответственно. Структурная схема, изображенная на рисунке 18а может быть редуцирована до структурной схемы, изображенной на рисунке 18b.

Рисунок 18

Следовательно, ВБР системы, структурная схема которой соответствует изображенной на рисунке 18b, определяют в соответствии с 7.2.2 по формуле

RS= RX1RX2+ RX3RX4- RX1RX2RX3RX4

9 Распространение метода на вычисление коэффициента технического использования

9.1 Введение

В некоторых случаях все формулы и методы, приведенные в настоящем стандарте, допускается использовать для определения коэффициента технического использования. Для этого необходимо заменить обозначения ВБР на обозначения коэффициента технического использования.

9.2 Предположения

Метод вычисления коэффициента технического использования допускается применять в случае, если отказы и ремонт отдельных элементов независимы друг от друга. На практике это означает, что отказ любого элемента никоим образом не должен влиять на наступление отказа любого другого элемента и что должен иметься доступный бесконечный парк запасных частей и служб ремонта.

Другими словами, среднее время простоя любого элемента должно быть характеристикой только этого элемента и не должно зависеть от того, сколько других элементов отказало и нуждается в ремонте. На практике это означает, что необходимо уделять внимание схеме соединения элементов и тщательно проверять, является ли каждый элемент системы легко доступным и не влияет ли его состояние на другие элементы.

9.3 Примеры

Предположим, что мы имеем систему, для которой определение отказа может быть смоделировано в соответствии со структурной схемой, представленной на рисунке 19.

Рисунок 19

Формула для определения ВБР системы RS в соответствии с 7.2.2 имеет вид

RS= RD(RA1+ RA2- RA1RA2)(RB1+ RB2- RB1RB2)(RC1+ RC2- RC1RC2)

Коэффициент технического использования элемента D обозначаем AD. Вместо А1, А2, В1, В2, С1 и С2 подставляем АА1, АA2, АВ1, АB2, АC1 и АC2 соответственно и получаем формулу для определения коэффициента технического использования системы

AS= AD(AA1 + АA2 - AA1AA2)(АB1 + АB2 - АB1АB2)(АС1 + АC2 - АC1AC2).

В качестве примера рассмотрим определение отказа системы, изображенной на рисунке 8. Соответствующая ВБР системы RS приведена в 8.1.1.

RS= (RC1 + RC2- RC1RC2) RA + (RB1RC1 + RB2RC2- RB1RC1RB2RC2)(1 - RA)

Следовательно, формула определения коэффициента технического использования должна быть следующей

AS = С1+ АC2- АС1АC2) AA+ (АB1АС1+ АB2АС2- АB1АС1АB2АС2)(1 - AA)

Следует заметить, что если интенсивности отказов и восстановлений элементов (обозначим их lА, lB, lC, mA, mB, mC) постоянны во времени, то ВБР определяют по формулам:

, ,

а коэффициент технического использования определяют по формулам:

9.4 Заключение и общие замечания

Адаптация формул определения ВБР для вычисления коэффициента технического использования может быть очень полезной, но предположения, указанные в 9.2, должны быть тщательно проверены. Они дополняют предположения, необходимые для расчета по формулам ВБР. Предположения, необходимые для вычисления коэффициента технического использования, включают требование независимости отказов от времени и порядка появления. Когда это требование не выполняется или когда отказы и ремонты не являются независимыми, необходимо применять другие методы анализа работоспособности, например Марковский анализ.