548.7.4 Объединенные проводники функционального заземления и защиты

548.7.4.1 Общие сведения

Проводник функционального заземления и защиты должен по меньшей мере отвечать требованиям, предъявляемым к защитному проводнику по всей его длине (раздел 543 ГОСТ Р 50571.10). Помимо соответствия требованиям поперечного сечения для защитных проводников, проводник функционального заземления и защиты должен также отвечать требованиям пункта 548.7.3.1 настоящего стандарта.

Проводник обратного постоянного тока для сети питания оборудования информационных технологий может также служить в качестве проводника функционального заземления и защиты при условии, что в случае размыкания цепи на маршруте проводника соответствующее безопасное напряжение (ожидаемое напряжение прикосновения) между одновременно доступными проводящими частями не превышает предельных величин в соответствии с пунктом 413.1 ГОСТ 30331.3/ГОСТ Р 50571.3 (50 В переменного тока или 120 В постоянного тока).

Если токи источника питания постоянного тока и сигнальные токи создают падение напряжения в объединенном проводнике функционального заземления и защиты, которые могут привести к разности потенциалов в установившемся режиме, площадь поперечного сечения проводника должна быть такой, чтобы падение напряжения ограничилось максимум 1 В. При вычислении падения напряжения следует пренебречь влиянием параллельных путей, т. е. расчет необходимо вести с некоторым запасом.


Примечание— Основная цель требований последнего абзаца — ограничить коррозию.


548.7.4.2 Типы проводников функционального заземления и защиты

Примеры различных электрических схем прокладки проводников, которые могут использоваться в качестве проводников функционального заземления и защиты, приведены в пункте 543.2.1 ГОСТ Р 50571.10.

548.7.4.3 Требования для использования проводящих строительных деталей в качестве проводников функционального заземления оборудования информационных технологий и защиты

Электрическая неразрывность пути прохождения тока для проводников функционального заземления, и защиты должна обеспечиваться посредством:

- типа конструкции;

- использования способов соединения, которые предотвращают ухудшения электрической проводимости вследствие механических, химических и электрохимических воздействий.


Примечание— Правилами соответствующих методов соединения являются сварные и гофрированные соединения, соединения на заклепках и болтах, которые надежно затянуты и не допускают самопроизвольного ослабления.


Удельная проводимость любой строительной детали, используемой в качестве проводника функционального заземления и защиты, должна отвечать требованиям пункта 548.7.4.1 настоящего стандарта. Когда предполагается снять часть оборудования, защитное соединение между оставшимися частями оборудования не должно прерываться до тех пор, пока сначала не будут обесточены такие удаляемые части оборудования.

Рекомендуется, чтобы для стоек или рядов длиной 10 м или более проводники функционального заземления и защиты подсоединялись на обоих концах к локальной потенциаловыравнивающей сетке либо к проводнику главной заземляющей шины.



ПРИЛОЖЕНИЕ А

(справочное)


Подсоединение сигнальных цепей


В зданиях с существующими электропроводками, которые включают PEN-проводники, либо когда существуют проблемы электромагнитной совместимости (ЭМС) на сигнальных кабелях из-за неадекватных мер обеспечения ЭМС в электрической установке (см. 548.1), рекомендуется применять следующие методы для того, чтобы избежать или свести к минимуму эту проблему:

- использовать оптоволоконные линии для сигнальных цепей;

- использовать местный разделительный трансформатор с отдельными обмотками для питания оборудования информационных технологий с учетом требований ГОСТ 30331.3/ГОСТ Р 50571.3, особенно пункта 413.1.5 для локальной IT-системы или положение пункта 413.5 для защиты посредством электрического разделения сети;

- прокладывать кабели так, чтобы свести к минимуму закрытые участки для совместных контуров, формируемых силовыми и сигнальными кабелями.

Более подробную информацию по дополнительным методам см. в МЭК 1000-1-1 [I].



ПРИЛОЖЕНИЕ В

(справочное)


Меры по обеспечению электромагнитной совместимости


Установки или оборудование информационных технологий могут подвергаться сбою в работе вследствие токов и напряжений, наведенных как в самом оборудовании, так и в соединения между отдельными единицами оборудования. Причинами помех являются переходные процессы в сети питания и переходные явления в заземляющих проводниках вследствие грозы или переключения нагрузки (коммутационные помехи), электростатические разряды, дифференциальные напряжения в элементах заземления на частоте питания, магнитные и электромагнитные, в том числе высокочастотные поля.

Ниже приводятся основные методы устранения электромагнитных помех:

- использование помехоустойчивого оборудования информационных технологий, основанного на электрических способах, либо путем применения коррекции ошибки;

- электрическое отделение установки или оборудования информационных технологий от источников возмущения;

- обеспечение эквипотенциального соединения между оборудованием для соответствующего диапазона частот;

- применение низкоимпедансного источника опорного напряжения, чтобы свести к минимуму потенциальные дифференциальные напряжения и обеспечить экранирование.

Существуют различные методы заземления и эквипотенциального соединения для достижения электромагнитной совместимости. Ниже приведены примеры таких методов.


B.1 Метод 1 — Радиально соединенные защитные проводники

Этот метод использует присоединение защитных проводников совместно с проводниками питания. Защитный проводник на каждом оборудовании обеспечивает достаточное сопротивление для электромагнитных возмущений (отличных от переходных явлений, возникающих в сети), так что сигнальные кабели между единицами оборудования подвергаются воздействию большей части входящего шума. Следовательно, оборудование должно обладать высокой устойчивостью, чтобы работать удовлетворительно.

Помехи можно значительно снизить, если создать изолированную цепь электроснабжения, обслуживающую только оборудование информационных технологий и отделенную (например с помощью разделительного трансформатора) от других цепей электроснабжения, заземления и внешних металлических систем (трубопроводов и т. п.).

В некоторых случаях точка заземления звездой (например РЕ-шина в соответствующем распределительном щите) радиально соединенных проводников функционального заземления и защиты для оборудования информационных технологий может заземляться отдельным изолированным проводником, подсоединенным к клемме главной шины заземления (см. 548.2).



ОИТ — оборудование информационных технологий


Рисунок B.1 — Радиально подсоединенные защитные проводники


В.2 Использование локального выравнивания электрических потенциалов (потенциаловыравнивающей сетки)

Действие обычных защитных проводников (РЕ-проводников) может быть многократно усилено применением локального выравнивания электрических потенциалов, выполненным в виде потенциаловыравнивающей сетки, вмонтированной в бетонный пол помещения в месте размещения оборудования информационных технологий (см. рисунок В.2). Степень выравнивания электрических потенциалов зависит от размера ячейки сетки  чем меньше ячейка, тем лучшим будет выравнивание потенциалов.



Рисунок В.2 — Локальное устройство выравнивания электрических потенциалов


Как и в случае метода 1, дополнительную устойчивость от помех можно обеспечить путем изоляции в целом цепей подачи питания на оборудование информационных технологий, включая систему заземления и потенциаловыравнивающую сетку, от других цепей электроснабжения и систем заземления, а также от внешних проводящих частей, таких как строительные металлоконструкции.


В.3 Система горизонтального и вертикального эквипотенциального заземления

Действие РЕ-проводников может быть многократно усилено за счет использования горизонтального и вертикального (между этажами) эквипотенциального заземления путем применения многоярусной системы уравнивания электрических потенциалов. Эта система имеет многочисленные соединения со строительными и технологическими металлоконструкциями, открытыми проводящими частями электроустановки и металлоконструкциями других назначений (см. рисунок В.3). В этой системе широко используются проложенные по стенам помещения заземляющие шины, выполненные в виде замкнутых контуров, удлиняющих собой главную заземляющую шину, служащую для подсоединения к ней заземляющих проводников от оборудования информационных технологий (см. 548.7).

В зависимости от частотного спектра действующих на оборудование информационных технологий помех и шага сетки (размера ячейки), этот метод может обеспечить достаточно низкий импеданс для решения большинства проблем на оборудовании со средней помехоустойчивостью. Тем не менее неудачная попытка поддерживать «закрытую» (вмонтированную в бетонный пол) сетку на всем протяжении помещения может привести к проблемам, поскольку все потенциальные источники шума будут «проявляться» в системе. Особое внимание следует уделить шагу сетки для рассеяния возмущений от таких источников.


В.4 Сравнение методов

Метод 1 наиболее легко реализуем, особенно в существующих зданиях. Сложность и затраты на реализацию возрастают в случае применения методов 2 и 3. Тем не менее эти методы с наибольшей вероятностью обеспечат приемлемую среду для оборудования информационных технологий.



Рисунок В.3 — Система горизонтального

и вертикального эквипотенциального заземления




ПРИЛОЖЕНИЕ С

(справочное)



Передача сигналов между различными участками

эквипотенциального соединения


Грозовые явления и повреждения в электрических сетях выше 1 кВ, особенно в сетях с эффективно заземленной нейтралью могут вызвать чрезмерные разности электрических потенциалов (перенапряжения) между различными зданиями или различными участками эквипотенциального соединения в одном здании. Они, в свою очередь, могут вызвать перенапряжения в проводниках, передающих сигналы между оборудованием информационных технологий, и тем самым создать помехи.

Чтобы избежать таких проблем, сигнальные линии передачи между различными участками эквипотенциального соединения можно реализовать с использованием неметаллического оптоволоконного кабеля или других непроводящих систем, таких как микроволновые или лазерные линии связи.


Примечание—3а проблемы возникновения дифференциальных напряжений в системах заземления на больших общественных телекоммуникационных сетях отвечает оператор, который может использовать другие методы.





ПРИЛОЖЕНИЕ Д

(обязательное)


Заземляющие устройства и системы уравнивания потенциалов

в животноводческих помещениях, содержащих оборудование

информационных технологий


Заземляющие устройства и системы уравнивания и выравнивания электрических потенциалов в животноводческих помещениях с оборудованием информационных технологий (устройства автоматического индивидуального дозирования корма по номеру животного, автоматические распознаватели индивидуальных номеров животных, приборы автоматического индивидуального учета надоев молока и т. п.) должны выполняться исходя из двух основных требованийобеспечения надежной работы без помех оборудования информационных технологий и обеспечения безопасных условий содержания скота, исключая при этом электропатологию животных, т.е. снижение продуктивности под воздействием безопасных для жизни весьма малых напряжений прикосновения, составляющих доли вольта.

Проверку этих требований следует осуществлять по результатам фиксированного вертикального электрического зондирования земли в местах размещения помещений согласно А8 приложения А к ГОСТ Р 50571.14.



ПРИЛОЖЕНИЕ Е

(справочное)


Библиография


[1] МЭК 1000-1-1—92 Электромагнитная совместимость (ЭМС). Часть 1. Общие сведения. Раздел 1. Применение и интерпретация основных определений и терминов

[2] МЭК 1024-1—90 Защита сооружений от молний. Часть 1. Общие принципы



Ключевые слова: электроустановки зданий; электроустановки до 1 кВ; обеспечение безопасности; защита от перенапряжений; заземление; уравнивание электрических потенциалов; выравнивание электрических потенциалов; оборудование информационных технологий; монтаж электрооборудования.



Содержание


1 (548.1.1) Область применения

2 (548.1.2) Нормативные ссылки

3 (548.1.3) Определения

548.2 Требования, предъявляемые к заземлению установок и оборудования информационных технологий

548.3 Использование главной заземляющей шины

548.4 Совместимость установок информационных технологий с PEN-проводниками в здании

548.5 Защита от электролитической коррозии

548.6 Условия электромагнитной совместимости

548.7 Заземление и уравнивание потенциалов в установках информационных технологий

Приложение А Подсоединение сигнальных цепей

Приложение В Меры по обеспечению электромагнитной совместимости

Приложение С Передача сигналов между различными участками эквипотенциального соединения