Пример - Определение уровня несоответствий для показателя «процент примесей» в металлургии или в фармакологии. Случай, когда необходимо иметь определенную уверенность в том, что уровень несоответствий не превышает установленного предельного процента.

8.6 Алгоритм интервального оценивания доли распределения случайной величины с неизвестной дисперсией в заданном интервале [L, М] приведен в таблице 8.6. Таким образом определяют верхнюю доверительную границу qв для доли распределения вне интервала [L, М], а также нижнюю доверительную границу pн для доли распределения случайной величины в данном интервале.

Таблица 8.6 - Определение верхней qв и нижней pн доверительных границ для доли распределения случайной величины в заданном интервале [L, М] и вне его (дисперсия неизвестна)

Необходимые условия: Prob{q £ qв} ³ 1 - a, Prob {p ³ pн} ³ 1 - a

Статистические и исходные данные

Промежуточные вычисления и процедуры

1 Объем выборки:

n =

1 Устанавливаем соответственно три пары доверительных вероятностей:

2 Сумма значений наблюдаемых величин:

Sx =

- для m и

- для s, причем

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

= 1 - a,

где j = 1, 2, 3, тогда

a1m = 1/4a

4 Степени свободы:

v = n – 1 =

a2m = 1/2a

a3m = 3/4a

5 Выбранная доверительная вероятность:

1 - a

ajs = /

6 Границы интервала:

L =

М =

2 Процедура доверительного оценивания среднего значения и стандартного отклонения


2.1 Интервальная оценка параметра m с доверительной вероятностью (1 - am)

,

(см. формулы (1), (2) таблицы 6.2)


2.2 Наихудшая точка :

= mн, если mнА £ В - mв

= mв, если mнА > В - mв


2.3 Интервальная оценка параметра s, соответствующая доверительной вероятности (1 - as)

(см. формулу (4) таблицы 7.1)


Примечание - Данную процедуру повторяют три раза


3 Интервальная оценка величины q при полученных значениях параметров m и s - по таблице 8.1:

qjв =


4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:

q1в, q2в, q3в

Результаты:

1 Верхняя доверительная граница для q, соответствующая доверительной вероятности (1 - a):

qв = min(q1в, q2в, q3в)

2 Нижняя доверительная граница для р:

рн = 1 - qв

Пример из 8.2, но точность станка заранее неизвестна. Случай, когда необходимо иметь определенную уверенность в том, что уровень несоответствий не превышает установленного предельного значения.

8.7 Алгоритм интервального оценивания доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале выше заданной нижней границы L приведен в таблице 8.7. Таким образом определяют нижнюю доверительную границу qн для доли распределения вне одностороннего интервала с нижней границей L, а также верхнюю доверительную границу рв для доли распределения случайной величины в указанном интервале.

Таблица 8.7 - Определение нижней qн и верхней рв, доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной нижней границей L (дисперсия неизвестна)

Необходимые условия: Prob{q ³ qн} ³ 1 - a, Prob {p £ pв} ³ 1 - a

Статистические и исходные данные

Промежуточные вычисления и процедуры

1 Объем выборки:

n =

1 Устанавливаем соответственно три пары доверительных вероятностей:

2 Сумма значений наблюдаемых величин:

Sx =

- для m и

- для s, причем

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

= 1 - a,

где j = 1, 2, 3, тогда

a1m = 1/4a

4 Степени свободы:

v = n – 1 =

a2m = 1/2a

a3m = 3/4a

5 Выбранная доверительная вероятность:

1 - a

6 Нижняя граница одностороннего интервала:

L =

2 Процедура доверительного оценивания среднего значения и стандартного отклонения


2.1 Интервальная оценка параметра m с доверительной вероятностью (1 - am)

(см. формулу (2) таблицы 6.2)


2.2 Интервальная оценка параметра s с доверительной вероятностью (1 - as)

(см. формулу (3) таблицы 7.1)


Примечание - Данную процедуру повторяют три раза


3 Интервальная оценка величины q при полученных значениях параметров m и s - по таблице 8.1:

qjн =


4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:

q1н, q2н, q3н

Результаты:

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности (1 - a):

qн = max(q1н, q2н, q3н)

2 Верхняя доверительная граница для р:

рв = 1 – qн

Пример - Доказательство (с заданной вероятностью) того, что уровень несоответствий по данному показателю качества превышает установленное в нормативной документации предельное значение. Случай предъявления рекламаций на серийную или массовую продукцию по определенному показателю качества.

8.8 Алгоритм интервального оценивания доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале ниже заданной верхней границы М приведен в таблице 8.8. Таким образом определяют нижнюю доверительную границу qн для доли распределения вне одностороннего интервала с верхней границей М, а также верхнюю доверительную границу рв для доли распределения случайной величины в указанном интервале.

Таблица 8.8 - Определение нижней qн и верхней рв, доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной верхней границей М (дисперсия неизвестна)

Необходимые условия: Prob{q ³ qн} ³ 1 - a, Prob {p £ pв} ³ 1 - a

Статистические и исходные данные

Промежуточные вычисления и процедуры

1 Объем выборки:

n =

1 Устанавливаем соответственно три пары доверительных вероятностей:

2 Сумма значений наблюдаемых величин:

Sx =

- для m и

- для s, причем

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

= 1 - a,

где j = 1, 2, 3, тогда

a1m = 1/4a

4 Степени свободы:

v = n – 1 =

a2m = 1/2a

a3m = 3/4a

5 Выбранная доверительная вероятность:

1 - a

6 Верхняя граница одностороннего интервала:

М =

2 Процедура доверительного оценивания среднего значения и стандартного отклонения


2.1 Интервальная оценка параметра m с доверительной вероятностью (1 - am)

(см. формулу (2) таблицы 6.2)


2.2 Интервальная оценка параметра s с доверительной вероятностью (1 - as)

(см. формулу (3) таблицы 7.1)


Примечание - Данную процедуру повторяют три раза


3 Интервальная оценка величины q при полученных значениях параметров m и s - по таблице 8.1:

qjн =


4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:

q1н, q2н, q3н

Результаты:

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности (1 - a):

qн = max(q1н, q2н, q3н)

2 Верхняя доверительная граница для р:

рв = 1 – qн

8.9 Алгоритм интервального оценивания доли распределения случайной величины с неизвестной дисперсией в заданном интервале [L, М] приведен в таблице 8.9. Таким образом определяют нижнюю доверительную границу qн для доли распределения вне интервала [L, М], а также верхнюю доверительную границу рв для доли распределения случайной величины в данном интервале.

Таблица 8.9 - Определение нижней qн и верхней рв, доверительных границ для доли распределения случайной величины в заданном интервале [L, М] и вне его (дисперсия неизвестна)

Необходимые условия: Prob{q ³qв} ³ 1 - a, Prob {p £ pн} ³ 1 - a

Статистические и исходные данные

Промежуточные вычисления и процедуры

1 Объем выборки:

n =

1 Устанавливаем соответственно три пары доверительных вероятностей:

2 Сумма значений наблюдаемых величин:

Sx =

- для m и

- для s, причем

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

= 1 - a,

где j = 1, 2, 3, тогда

a1m = 1/4a

4 Степени свободы:

v = n – 1 =

a2m = 1/2a

a3m = 3/4a

5 Выбранная доверительная вероятность:

1 - a

ajs = /

6 Границы интервала:

L =

М =

2 Процедура доверительного оценивания среднего значения и стандартного отклонения


2.1 Интервальная оценка параметра m с доверительной вероятностью (1 - am)

или

,

(см. формулы (1), (2) таблицы 6.2)


2.2 Наихудшая точка :

= mв, если (2.2.1)

= mн, если (2.2.2)

, если формулы (2.2.1) и (2.2.2) не выполняются


2.3 Интервальная оценка параметра s с доверительной вероятностью (1 - as)

(см. формулу (3) таблицы 7.1)


Примечание - Данную процедуру повторяют три раза


3 Интервальная оценка величины q при полученных значениях параметров m и s - по таблице 8.1:

qjн =


4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:

q1н, q2н, q3н

Результаты:

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности (1 - a):

qн = max(q1н, q2н, q3н)

2 Верхняя доверительная граница для р:

рв = 1 – qн

ПРИЛОЖЕНИЕ А
(справочное)

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ СТАНДАРТНОГО НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ

A.1 В таблице A.1 даны значения функции стандартного нормального закона распределения

,

т. е. значения площади под кривой

,

лежащей левее точки и.

А.2 В левой колонке таблицы A.1 приведены значения аргумента и от 0,00 до 0,49, обозначение буквой z. Во второй колонке приведены значения функции Ф для этих значений аргумента. В последующих колонках таблицы даны значения функции Ф для значении аргумента и от 0,50 и выше. При этом значение аргумента и находят как сумму значения z и величин:: 0,50; 1,00; 1,50; 2,00; 2,50; 3,00.