В следующей таблице 2.8 приведены результаты расчёта для свай, с учетом 10 форм колебаний:

 - проекции перемещения головы р-й сваи, соответственно на оси х и у, мм;

 - проекции на оси x и у сейсмической нагрузки, воспринимаемой р-й сваей, кН;

 - сейсмический момент р-й сваи, кН·м.

5. ВЕРОЯТНОСТНЫЙ РАСЧЁТ, УЧИТЫВАЮЩИЙ СЛУЧАЙНЫЕ ЭКСЦЕНТРИСИТЕТЫ МЕЖДУ ЦЕНТРОМ МАСС И ЦЕНТРОМ ЖЕСТКОСТИ СВАЙНОГО ПОЛЯ СЕКЦИЙ

Согласно требованиям раздела 4 Руководства принимаем среднее квадратическое отклонение случайного эксцентриситета на секциях  Среднее значение . Причём, распределение вероятностей случайных величин подчиняется нормальному закону.

Проверим возможность использования метода линеаризации, описанного в приложении 6.

Искомым вектором является вектор перемещений крайних свай секций  составленный из шести компонентов (отклонения концов двух смежных секций в рассматриваемом примере одинаковы).

В результате расчёта регулярной цепочки секций при отсутствии эксцентриситетов е=0 (см. расчёт в разделе 4 настоящего приложения) определён вектор средних перемещений свай

.                                           (2.7)

Из интервала случайных эксцентриситетов  выбраны значения  и решено 6 вариантов задач. В качестве примера, для одного из этих вариантов, когда е = +0,90 м учитывается поочерёдно на каждой секции, построены эпюры перемещений свай, изображённые на рис.2.3.

Как показали результаты расчётов, наибольшие отклонения имеют концевые сваи секции, на которой имеется эксцентриситет.

Эксцентриситеты на других секциях оказывают малое влияние на отклонения этих свай. Рассмотрим зависимость отклонений концевых свай в секции от величины эксцентриситета на секции.

По результатам расчётов 6 вариантов задач на рис. 2.4 построены зависимости перемещений свай от эксцентриситета  К - номер узла в цепочке секций, r - номер секции, в которой имеется эксцентриситет.

Из рис. 2.4 видно, что зависимость  носит нелинейный характер причём линеаризовать эту зависимость приближённо возможно лишь для участка |е|<0,90 м. Поэтому в рассматриваемом примере при расчётном эксцентриситете из интервала  м использование метода линеаризации может привести к заметным погрешностям.

Следует отметить, что участок линейной зависимости уменьшается при , где параметр  определяется по формуле (4.3) приложения 4.

Произведём оценку возможных перемещений свай, возникающих вследствие образования на секциях эксцентриситетов  с помощью построения огибающей эпюры по результатам выполненных частных решений.

Рис. 2.3. Эпюры перемещений свай в цепочке секций

а, б,…, д - для эксцентриситетов соответственно на 1-ой, 2-ой,..., 5-ой секциях;

L - длина цепочки;

y/L - относительные координаты свай в цепочке секций;

1,2,…, 6 - узлы расположения свай вдоль пирса

Рис. 2.4. Зависимость перемещений свай от эксцентриситета V(e):

1,2,…, 6 - кривые зависимости для свай, расположенных в узлах цепочки секций с соответствующими номерами 1, 2,…, 6

Рис. 2.5. Эпюры перемещений свай в цепочке секций, возникающих вследствие влияния эксцентриситетов на деформацию пирса:

1 - огибающая эпюра; 2 - эпюра для е1 = +0,9м ;

3 - эпюра для е2 = +1,8 м; 4 - эпюра для е3 = +1,8;

5 - эпюра для е5 = -0,9 м; 6 - эпюра для е4 = -1,8;

7 - эпюра для е5 = -1,6 м

Наибольшие отклонения  для свай, расположенных в узлах цепочки секций 1, 2, ..., 6, определяются с соответствующих кривых на рис.2.4 и сведены в таблицу 2.1.

Таблица 2.1

К

е, м

, мм

Skr, кН

1

2

3

4

1

+0,9

24,0

984

2

+1,8

16,5

676

3

+1,8

17,9

734

4

-1,8

17,9

734

5

-1,8

16,5

676

6

-0,9

24,0

984

На рис.2.5 построена огибающая эпюра возможных перемещений свай в цепочке секций: при любых эксцентриситетах из рассмотренного интервала.

Усилия в крайних свай секций, приведённые в таблице 2.1, вычисляются по формуле

                                                                                                 (2.8)

6. РАСЧЁТ УСИЛИЙ В КРАЙНИХ СВАЯХ СЕКЦИЙ ПО ПРИБЛИЖЁННЫМ ФОРМУЛАМ

По приближённой формуле (4.10) рекомендуемого приложения 4 определяется частота собственных колебаний цепочки

,                                               (2.9)

что соответствует периоду  с.

По рис.3 Руководства определяется коэффициент динамичности β = 1,5.

Из рис.4.4 приложения 4 для каждой сваи с относительными координатами 0,0; 0,2; 0,4; 0,6; 0,8; 1,0 определяются соответствующие коэффициенты форм

.                                          (2.10)

Исходные данные и полученные величины подставляем в формулу (4.9) рекомендуемого приложения 4 и определяем расчётные горизонтальные усилия Spx в крайних сваях с первой по пятую секции, обусловленные сейсмическим воздействием в 8 баллов,

                               (2.11)

Как видно, полученные результаты удовлетворительно согласуются с результатами точного расчёта, приведённого в таблице 2.1.

ПРИЛОЖЕНИЕ 3

(справочное)

ПРИМЕР РАСЧЕТА ОТДЕЛЬНОЙ СЕКЦИИ ПРИЧАЛА С ВЫСОТНОЙ НАДСТРОЙКОЙ

1. УСЛОВИЯ РАСЧЕТА И ИСХОДНЫЕ ДАННЫЕ

Требуется определить сейсмические силы, действующие на технологическую секцию нефтепирса и на расположенное на ней здание операторской.

Сейсмичность района 8 баллов.

Конструкция секции нефтепирса приведена в приложении 1.

Здание операторской запроектировано четырехэтажным высотой 10,0 м и размерами в плане 11,9´6,0 м с цокольным этажом, который размещается в монолитных конструкциях пирса.

Центр масс здания расположен на расстоянии 17,4 м от центра масс технологической секции нефтепирса.

2. ВЫБОР ДИНАМИЧЕСКОЙ РАСЧЕТНОЙ СХЕМЫ СООРУЖЕНИЯ

В соответствии с п.4.1 Руководства сейсмические силы, действующие на причальное сооружение и надстройку, следует определять рассматривая совместные сейсмические колебания причального сооружения и высотной надстройки.

Отношение массы здания операторской к массе технологической секции нефтепирса составляет 0,03.

Согласно п.3.1 рекомендуемого приложения здание операторской нефтепирса можно считать легкой надстройкой.

Исходя из конструктивных особенностей рассматриваемого сооружения, его динамическая расчетная схема описывается в виде отдельной секции (жесткий диск, опирающийся на упругие свайные опоры) с высотной легкой надстройкой башенного типа (рис. 3.1).

Рис. 3.1. Динамическая расчетная схема

Параметры динамической расчётной схемы, относящиеся к нефтепирсу, приведены в приложении 1.

Расчетная схема надстройки представляется в виде консольного стержня с двумя сосредоточенными массами m1 = m2 = 150 т, расположенными на разных уровнях по высоте. Жесткость стержня эквивалентна общей боковой жесткости всех элементов здания.

3 ОПРЕДЕЛЕНИЕ СЕЙСМИЧЕСКИХ СИЛ

Сейсмические силы, действующие на причальное сооружение и надстройку, определяются по приближенному способу, изложенному в рекомендуемом приложении 4.

Результаты расчета причального сооружения приведены в справочном приложении 1.

Сейсмические силы, действующие на надстройку, определяются по формуле (4.13) рекомендуемого приложения 4.

Исходные данные для расчета следующие: К1 = 0,25; Кψ = 1,2; g = 9,8 м/с2; A = 0,2.

Приведенный коэффициент формы  причального сооружения определяется по формуле (4.14) рекомендуемого приложения 4. Входящие в указанную формулу величины приняты по результатам расчета отдельной секции с эксцентриситетом е = -3,5 м, или 4,5%L. В результате вычислении получено .

Частоты (периоды) и формы собственных колебаний надстройки определены по известным формулам динамики сооружений как для системы с двумя степенями свободы.

На основании полученных периодов Ti по графику на рис.3 основной части Руководства соответствующем грунтам II категории, определены коэффициенты динамичности β, а по формуле (5) - коэффициенты формы .

Результаты расчета динамических характеристик представлены в табл.3.1.

Таблица 3.1

Динамические характеристики надстройки

Период, c

Коэффициент динамичности

Коэффициенты формы

T1

T2

β1

β2

η11

η21

η12

η22

0,805

0,119

1,37

2,70

0,39

1,19

0,61

-0,19

Коэффициенты усиления колебаний надстройки Kyi определяются по графикам на рис.4.6 в зависимости от параметра γ (см. формулу (4.15) и отношения приведенной массы надстройки к массе секции , вычисляемого с использованием формул (4.16) и (4.17) рекомендуемого приложения 3. Для рассчитываемого сооружения  т;  т;  т; ,    

Коэффициент усиления для первого тона колебаний - Ky1 = 2,5, для второго тона - Ку2 = 1,1.

Результаты расчета сейсмических сил представлены в табл.3.2.

Таблица 3.2

Сейсмические силы

Первая форма

Вторая форма

S11, кН

S21, кН

S12, кН

S22, кН

122,0

374,0

166,0

-52.0

ПРИЛОЖЕНИЕ 4

(рекомендуемое)

ОПРЕДЕЛЕНИЕ СЕЙСМИЧЕСКИХ НАГРУЗОК, УСИЛИЙ И ПЕРЕМЕЩЕНИЙ

Приведённые в настоящем приложений приближенные формулы предназначены для предварительных расчётов на ранних стадиях проектирования. Допускается их использовать при расчётах причальных сооружений III и IV классов в случае отсутствия специализированных вычислительных программ.

1. ИЗОЛИРОВАННАЯ СЕКЦИЯ

1.1. Для изолированной секции сейсмическая сила и сейсмический момент, соответствующие i-й форме колебаний, определяются по формулам

,

,                                                 (4.1)

где М, θ - масса и момент инерции массы секции относительно центральной вертикальной оси, т, т·м2;

ηvi, ηφi - коэффициенты формы, определяемые по графикам на рис.4.1 настоящего приложения в зависимости от эксцентриситета е и параметра λ.

Эксцентриситет е между центром масс секции и центром жёсткости свайного поля следует определять с обеспеченностью 0,95 и принимать не менее 3% L, где L -линейный горизонтальный размер секции в направлении, перпендикулярном направлению сейсмического воздействия.

Рис. 4.1. Графики коэффициентов форм для различных λ:

1, 2…10 - соответственно для λ = 6,200; 2,060; 1,240; 1,125; 1,030; 0,993; 0,955; 0,886; 0,775; 0,620

Для случая, когда существует конструктивный эксцентриситет ек (см. пример расчёта в приложении 1), расчётные эксцентриситеты принимаются из интервала

.                                                 (4.2)

Параметр λ, характеризующий соотношение частот крутильных и поступательных колебаний секции без эксцентриситета, определяется по формуле

,                                                          (4.3)

где  - коэффициенты жёсткости свайного поля секции, определяемые по формулам (3) Руководства.

При выборе значений коэффициентов форм ηv и ηφ, соответствующих отдельному тону колебаний (с периодом Тmax либо Tmin), следует руководствоваться блок-схемами, приведёнными на рис.4.2.

Примечание. Сейсмический момент mi считается положительным при повороте секции против часовой стрелки (рис.4.3). Знак сейсмического момента mi совпадает со знаком соответствующего коэффициента формы ηφi.

1.2. Частоты собственных колебаний секции следует определять по формуле

                           (4.4)

При малых эксцентриситетах (е<5%L) частоты собственных колебаний секции допускается определять по формулам

                                 .                            (4.5)

Рис. 4.2. Блок-схемы для выбора коэффициентов форм

Рис. 4.3. Схема действия на секцию сейсмических сил

а - для одного тона колебаний,

б - для другого тона

Периоды собственных колебаний определяются по формуле

.                                                         (4.6)

1.3. Перемещение центра масс и угол поворота плиты секции в горизонтальной плоскости, обусловленные действием i-й составляющей сейсмических сил, определяются по формулам

.                                               (4.7)

1.4. Усилия в р-й свайной опоре секции определяются согласно п. 5.4 Руководства по формулам

                                     (4.8)

1.5. Результирующие усилия в свайных опорах следует определять согласно п. 5.6 основной части настоящего Руководства.

2. РЕГУЛЯРНАЯ ЦЕПОЧКА СЕКЦИЙ

2.1. Для регулярной цепочки соединённых между собой одинаковых симметричных секций (рис. 4.4) расчётные горизонтальные усилия в р-й свайной опоре, обусловленные сейсмическим воздействием поперечного направления, допускается определять по формуле

,                                                  (4.9)

где  - результирующей коэффициент формы с учётом случайных эксцентриситетов.

Результирующий коэффициент формы следует определять по графикам на рис. 4.4 в зависимости от граничных условий цепочки и относительного расстояния р-й свайной опоры от начала цепочки.

Частоту собственных колебаний допускается определять по формуле

                                                        (4.10)