5. По известному расходу Q находят расчетную скорость движения фильтрационного потока по формуле (5), в которую для определения ω подставляют значения hр и bф. По расчетной скорости выбирают тип укрепления русла.

6. Если тип укрепления русла известен, то по допускаемой скорости движения υд можно определить необходимую площадь живого сечения потока на выходе из сооружения и ширину фильтрующей части в нижнем бьефе по формулам:

                                                                   (12)

                                                                      (13)

Ширину фильтрующей части в верхнем бьефе вычисляют с учетом формы поперечного сечения и при одинаковом заложении откосов по всей длине сооружения.

7. Высоту фильтрующей части в верхнем бьефе назначают на 0,5 м выше уровня воды, в нижнем - из условия hв / 2 + 0,5 (см: рисунок). Вертикальные размеры фильтрующей части между начальным и конечным сечениями определяют после построения кривой свободной поверхности фильтрационного потока. При этом верх фильтрующей части должен быть выше кривой свободной поверхности не менее, чем на 0,5 м.

8. Определение максимального расчетного расхода по условию допустимой глубины водотока перед насыпью при безнапорном движении воды в пределах ФН выполняют в следующем порядке:

а) находят нормальную глубину hо водотока в пределах сооружения, при которой поток имеет равномерное движение, решая последовательным приближением уравнение

                                            (14)

где ηв и ηн - относительные глубины во входном и выходном сечениях водотока

    

Б(ηв) и Б(ηн) - функции относительных глубин, определяемые по табл. 4;

б) максимальный расход определяют по формуле

                                                     (15)

Таблица 4

Относительная глубина водотока ηв или ηн, м

Значения функции Б(η) при i0 > 0

Форма поперечного сечения

прямоугольная

yо = 2*

параболическая

y0 = 3

треугольная

yo = 4

0,05

0,05

0,05

0,05

0,10

0,10

0,10

0,10

0,15

0,15

0,15

0,15

0,20

0,20

0,20

0,20

0,25

0,26

0,25

0,25

0,30

0,31

0,30

0,30

0,35

0,36

0,35

0,35

0,40

0,42

0,41

0,40

0,45

0,48

0,46

0,45

0,50

0,55

0,52

0,51

0,55

0,62

0,58

0,56

0,60

0,69

0,64

0,62

0,65

0,78

0,70

0,68

0,70

0,87

0,78

0,73

0,75

0,97

0,86

0,81

0,80

1,10

0,95

0,89

0,90

1,47

1,32

1,10

0,95

1,83

1,47

1,30

1,01

2,65

1,42

0,94

1,05

1,86

0,90

0,55

1,10

1,52

0,68

0,39

1,20

1,20

0,48

0,25

* уо - параметр, характеризующий поперечное сечение фильтрующей части сооружения.

Примеры гидравлических расчетов фильтрующих насыпей

Пример 1. Определить размеры поперечного сечения прямоугольной напорной фильтрующей части для пропуска расхода водотока Q = 5 м3/с.

Дано. Продольный уклон лога i0 = 0,02; грунт основания - суглинок; средний диаметр остроугольного камня, приведенного к шару d = 45 см; пористость n = 0,50; коэффициент фильтрации каменной наброски (см. табл. 2) k = 0,66 м/с. Ширина земляного полотна по верху b = 6 м, высота до бровки Нбр = 5 м, заложение откосов насыпи m = 1,5. При этом длина фильтрующей части по низу будет равна L = b + 2Нбр ∙m = 6 + 2∙5∙1,5 = 21 м.

Решение. Назначаем глубину воды перед фильтрующей насыпью:

а) из условия незатопляемости бровки земляного полотна (1)

hв  5 - 0,5  4,5 м;

б) из условия (2) устойчивости основания, защищенного обратным фильтром, при С = 3,5

Принимаем hв = 4 м.

Определяем по формуле (3) гидравлический уклон потока, пренебрегая бытовой глубиной,

Определяем необходимую площадь живого сечения по формуле (4)

Задаемся шириной фильтрующей части bф = 6 м и определяем ее высоту

Определяем расчетную скорость движения фильтрационного потока по формуле (5)

Тип укрепления русла выбирается соответственно расчетной допускаемой скорости течения воды (табл. 5) с учетом использования местных материалов.

Пример 2. Определить размеры поперечного сечения прямоугольной безнапорной фильтрующей части сооружения.

Дано. Расчетный расход Q = 2 м3/с; высота земляного полотна до бровки Нбр = 6 м; ширина основной площадки b = 6 м; заложение откосов m = 1,5; продольный уклон лога io = 0,01; грунт основания - суглинок; камень наброски имеет угловатую форму и средний диаметр d = 40 см; пористость наброски n = 0,50; длина оголовков l = 1,5 м.

Решение. Определяем длину фильтрующей части по низу

L = b + 2 Нбрm + 2l = 6 + 2∙1,5∙6 + 2∙1,5 = 27 м.

Таблица 5

№ пп

Грунт

Характеристика грунта или укрепления

Высота выступов шероховатости ??, мм

Формула для определения допускаемой скорости υд, м/с

1

2

3

4

5

1

Песок мелкий

d50 = 0,05 мм

d50 = 0,25 мм

d50 = 1,0 мм

0,035

0,175

0,7

2

Песок средней крупности и крупный

d50  1,5 мм,

 = 0,7

 = 0,7

3

Глинистый грунт

Структура грунта не нарушена. Грунт максимально водонасыщен. Инородные включения в грунте и растительность на поверхности грунта отсутствуют

3,0

υД = 0,17 + 2,5С

4

Каменная наброска

 = 0,7

Примечания. 1. В формулах, приведенных в таблице, приняты обозначения:

d - средний размер камней;

d5, d15, d50, d95 - размеры частиц грунта, равные величине отверстия сит, на которых задерживается соответственно 5; 15; 50 и 95 % от веса пробы;

m - заложение откоса канавы;

mo - заложение естественного откоса грунта;

g - ускорение силы тяжести;

γ1, γ - плотность соответственно грунта и воды;

С - сцепление грунта, кг/см2.

2. В формулах графы 5 член 0,075(mo/m)2 учитывается только для случаев определения υд у откосов при условии обеспечения общей устойчивости последних.

Назначаем глубину воды перед фильтрующей частью из условия незатопляемости бровки земляного полотна и устойчивости основания по формулам (1) и (2):

hв  6 - 0,5  5,5 м;

Принимаем hв = 2 м из условия уменьшения площади затопления местности. Тогда длина

S = L - mhв = 27 - 1,5∙2 = 24 м.

Определяем параметр

По табл. 3 находим значение ηв = 0,54.

Определяем расчетную глубину потока на выходе из фильтрующей насыпи по формуле (6)

Принимаем тип укрепления русла - каменную наброску (песчаник) со средним размером камня d = 40 см.

По табл. 5 определяем допускаемую скорость течения воды при таком укреплении русла.

Определяем расчетную площадь живого потока на выходе из фильтрующей насыпи по формуле (12)

Определяем:

ширину каменной наброски в нижнем бьефе по формуле (13)

высоту фильтрующей части насыпи в верхнем бьефе

hфв = 2 + 0,5 = 2,5 м;

в нижнем бьефе hфн = hв/2 + 0,5 = 2/2 + 0,5 = 1,5 м.

Пример 3. Определить максимальный расход Qmax.

Дано. Фильтрующая насыпь из рваного камня средним диаметром d = 45 см, прямоугольная, безнапорная шириной bф = 6 м, высотой в верхнем бьефе hфв = 2,7 м, в нижнем hфн = 1,6 м, высота земляного полотна до бровки Нбр = 5 м; ширина основной площадки b = 6 м, продольный уклон лога iо = 0,02; грунт основания - суглинок, укрепление русла - камнем с грубой поверхностью.

Решение. Определяем длину фильтрующей части по низу:

L = b + 2mНбр = 6 + 2∙1,5∙5 = 21 м.

Находим максимально допустимый расход из условия неразмываемости русла

По табл. 5 находим υд = 2,55 м/с. Для определения расчетной площади живого сечения потока принимаем глубину на выходе

h1 = hфн - 0,5 = 1,6 - 0,5 = 1,1 м.

Тогда hр = 0,8∙h1 = 0,8∙1,1 = 0,88 м;

ωр = bфhр = 6∙0,88 = 5,28 м2.

Расход

Найденный расход может создавать напор воды перед фильтрующей насыпью, значительно превышающий ее высоту, поэтому необходимо определить максимальный расход из условия допустимой глубины воды перед насыпью hв при безнапорном режиме движения, используя формулы (14) и (15).

Определяем допускаемые глубины воды во входном и выходном сечениях:

hв = hфв - 0,5 = 2,7 - 0,5 = 2,2 м;

hн = hфн - 0,5 = 1,6 - 0,5 = 1,1 м.

Определяем длину пути фильтрации потока S (см. рисунок настоящего приложения)

S = L - mhв = 21 - 1,5∙2,2 = 17,7 м.

Находим нормальную глубину потока ho, решая последовательным приближением уравнение (14).

Назначаем ho = 3,5. Тогда, используя табл. 4, находим значения относительных глубин водотока во входном и выходном оголовках:

Б(ηв) = 0,741;

Б(ηв) = 0,325;

Определяем длину пути фильтрации потока по формуле (14)

Знак минус свидетельствует об уменьшении глубины потока в каменной наброске в направлении течения.

Полученное значение S близко к расчетному. Это означает, что при ho = 3,5 м перед насыпью установится глубина hв ≈ 2,2 м.

При этом максимальный расход определяем по формуле (15)

Приложение 12

Обязательное

Руководство по устройству заземления

1. Нормы сопротивления заземляющих устройств для электроустановок должны соответствовать Правилам устройства электроустановок (ПУЭ) и Объемам и нормам испытания электрооборудования.

2. Для заземляющих устройств железнодорожного электроснабжения следует в первую очередь использовать естественные заземлители - рельсовые пути, подземные водопроводные трубы, обсадные трубы, подземные части железобетонных конструкций и сооружений, в том числе фундаменты зданий; свинцовые оболочки силовых кабелей, проложенных в земле.

3. Для искусственных заземлителей следует применять: при вертикальном погружении - стальные трубы, угловую сталь, металлические стержни и т.п.; при горизонтальной прокладке - стальные полосы, круглую сталь и т.п. В районах с усиленной коррозией следует применять оцинкованные или омедненные заземлители.

4. При выборе стальных заземлителей и заземляющих проводников следует руководствоваться ПУЭ.

5. В качестве естественного заземляющего устройства линий продольного электроснабжения напряжением до 35 кВ, размещаемого на неэлектрифицированных участках железных дорог в теле земляного полотна, и комплектных трансформаторных подстанций, находящихся в зоне железной дороги, следует использовать рельсовый путь. При этом рекомендуется применять групповое заземление опор линий, с присоединением спуска троса группового заземления к средней точке дросселя-трансформатора или непосредственно к рельсу. Длину троса группового заземления, подвешиваемого на заземляемых опорах, а также расстояние между точками присоединения его к рельсовому пути определяют расчетом. При этом максимальную длину троса группового заземления для железобетонных и металлических опор принимают не более половины суммарной длины двух смежных блок-участков (Т-образная схема) и половины длины соответствующего блок-участка рельсовой сети (Г-образная схема).

6. На участках, не оборудованных автоблокировкой, трос группового заземления следует присоединить непосредственно к путевым рельсам, которые соединяют между собой электрическими перемычками не менее, чем в двух местах на длине троса группового заземления.

На участках с автоблокировкой трос группового заземления следует присоединять к средней точке дроссель-трансформатора, установленного между блок-участками, или к средней точке путевого дросселя.

На отпаечных и обходных линиях, а также на станциях, где рельсовый путь по условиям работы не может быть использован, следует прокладывать вдоль оси пути протяженные заземлители, соединяемые тросом группового заземления. Количество и длину протяженных заземлителей определяют расчетом.

7. На электрифицируемых участках все металлические конструкции (мосты, путепроводы, светофоры, отдельно стоящие опоры и т.п.), а также опоры контактной сети, ВЛ 6-35 кВ и ДПР следует заземлять согласно СНиП III-41-76.

8. Нормы сопротивления заземлений для стационарных установок проводной связи должны соответствовать ГОСТ 464-68.

9. В зависимости от требуемой величины сопротивления заземления рекомендуется применять следующие конструкции заземлителей:

протяженные - 30 Ом и более;

вертикальные одиночные - от 15 до 30 Ом;

многоэлектродные и глубинные - до 15 Ом.

10. Стационарные заземления для узлов связи, как правило, следует устраивать в виде выносных многоэлектродных протяженных заземлителей, располагаемых в непромерзающих водоемах, или вертикальных с искусственной обработкой грунта.