2. Для местности по пп. 1-4 дано наименьшее значение параметра шероховатости для условий режима максимального ветра с учетом наличия снегового покрова. Эти же значения параметра шероховатости принимают и при гололеде.

3. Значение параметра шероховатости по п. 5 дано для случая, когда станционные постройки расположены с обеих сторон железнодорожного пути не далее 50 м В противном случае его значение принимают для местности, лежащей с наветренной стороны станционных настроек

4. В случаях, когда местность не подходит под приведенную выше классификацию, можно принимать промежуточное значение параметра шероховатости.

5. Для участков контактной сети, проходящих по берегу озера, водоема, моря, если с другой его стороны расположена отвесная стена гор, параметр шероховатости следует принимать по п. 2.

Высоту расположения проводов контактной сети над подстилающей поверхностью для участков железной дороги с различным профилем следует определять в соответствии со схемами рис. 2.

Для участков, расположенных в выемке глубиной 7 м и более, высоту z над подстилающей поверхностью следует принимать равной 3 м.

6. При расположении железнодорожной насыпи на местности с параметром шероховатости 0,5 и 1 м высота расположения проводов контактной сети уменьшается на высоту препятствия, т. е. становится равной (z – 10) м. При этом значение параметра шероховатости подстилающей поверхности принимают равным 0,15 м по п. 5 и 0,2 м – п. 6.

Рис. 1. Параметр шероховатости подстилающей поверхности zо, м. Коэффициент изменения ветрового давления:

I - насыпь высотой (zм на рис. 2); II - нулевое место; III - выемка глубиной (zв на рис. 2)

Рис. 2. Схемы расположения проводов контактной сети над подстилающей поверхностью

2.12. Нормативное значение средней составляющей ветровой нагрузки Qсн Н на опорные, поддерживающие и фиксирующие устройства контактной сети определяют по формуле:

Qсн = qнзСхFк, (3)

где Сх - аэродинамический коэффициент, принимаемый по п. 2 18 настоящих Норм и по обязательному приложению 4 СНиП 201.07-85 по нагрузкам и воздействиям; Fк - площадь конструкции или ее части по наружному габариту, перпендикулярная направлению ветрового потока, м2.

2.13. Нормативное значение пульсационной составляющей ветровой нагрузки на опорные, поддерживающие и фиксирующие устройства Qпн Н определяют по формуле:

Qпн = 0,73??Qсн??vп??mп, (4)

где vп??- коэффициент пространственной корреляции пульсации давления ветра, принимаемый по табл. 3; mп - коэффициент пульсаций давления ветра, принимаемый по рис. 3.

2.14. Нормативное значение средней составляющей ветровой нагрузки Qсн??Н на провода и передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства определяют по формуле:

Qсн??= ??нqнвСхFк, (5)

где ??н - коэффициент, учитывающий неравномерность давлений ветра вдоль пролета, принимаемый равным: при давлении ветра до 400 Па - 0,9; 401-650-0,8; 651-1000-0,7; более 1001 Па - 0,65; при механическом расчете проводов и длин пролетов ??н = 1.

Рис. 3. Коэффициент пульсаций давления ветра

2.15. При наличии многолетних (не менее 20 лет) данных местных гидрометеостанций о скоростях ветра допускается определять нормативное ветровое давление по выражению:

qo = 0,0615v2о,

где vо - скорость ветра на уровне 10 м над поверхностью земли, соответствующая десятиминутному интервалу осреднения и превышаемая в среднем в 10 лет, м/с

2.16. Нормативное значение пульсационной составляющей ветровой нагрузки, передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства Qпн H, находят по формуле:

Qпн = 0,73??Qсн??vп??mп????п, (6)

где ??п - коэффициент динамичности, принимаемый по рис. 4 в зависимости от веса провода (проводов) (при гололеде вместе с весом отложения).

Таблица 3

Линейный размер конструкций. Длина пролета

2

5

10

15

20

25

35

45

55

65

70

75

vп

0,89

0,87

0,85

0,82

0,80

0,77

0,75

0,72

0,67

0,62

0,58

0,54

Рис. 4. Коэффициент динамичности для проводов контактной сети

2.17. При расчете ветровой нагрузки, передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства контактной сети, следует принимать следующие коэффициенты надежности по ветровой нагрузке:

а) при расчете по прочности - 1,3;

б) при расчете по деформациям - 1,0;

в) при расчете по образованию трещин в железобетонных опорах - 0,75.

Расчетное значение ветровой нагрузки на опорные, поддерживающие и фиксирующие устройства следует определять как произведение нормативного значения на коэффициент надежности по ветровой нагрузке 1,2.

Механический расчет проводов выполняют на нормативное значение средней составляющей ветровой нагрузки, принимая нормативное ветровое давление qo (п. 2.11), умноженное на коэффициент 1,10.

2.18. При определении ветровой нагрузки на провода и конструкции контактной сети значения аэродинамического коэффициента лобового сопротивления Сх принимать следующие:

а) одиночные провода и тросы диаметром 20 мм и более - 1,10;

б) то же диаметром менее 20 мм и также на провода и тросы, покрытые гололедом - 1,20;

в) одиночные контактные провода и тросы цепной подвески с учетом зажимов и струн - 1,25;

г) двойные контактные провода с расстоянием между ними 40 мм на нулевых местах и на насыпях высотой до 5 м от сопротивления единичного провода - 1,55, то же на насыпях более 5 м - 1,85;

д) железобетонные опоры кольцевого и круглого сечения - 0,7;

е) ригели жестких поперечин по пп. 2.19-2.22 данных Норм;

ж) плоские элементы конструкций - 1,4.

2.19. Расчет ветровых .нагрузок на ригели жестких поперечин следует выполнять в соответствии с рекомендациями СНиП 2.01.07-85 по нагрузкам и воздействиям и дополнительными рекомендациями пп. 2.20-2.22 настоящих Норм.

2.20. Ветровые нагрузки на ригели жестких поперечин необходимо определять для отсека фермы и приводить затем к нагрузке на 1 м.

За отсек принята часть фермы, заключенная между двумя поперечными сечениями на длине панели и характеризующаяся схемой решетки и геометрическими параметрами, которые повторяются по длине фермы (рис. 5).

2.21. Горизонтальную расчетную нагрузку на отсек ригеля х1 Н определяют при действии ветра вдоль пути:

,

где nв - коэффициент надежности по ветровой нагрузке, принимаемый равным 1,2; - характерная площадь с наветренной стороны отсека фермы (м2), определяемая для четырехгранных ферм по формуле:

= Sп + Sпв + nркSрк + nрпSрп + nркгSркгcos3??c + 0,5nрксSрксcos3??c,

где Sп, Sпв, Sрк, Spп, Spкг, Spкc - характерные площади стержней отсека, соответственно нижнего и верхнего поясов, раскосов, распорки, раскоса горизонтальной грани, раскоса в поперечном сечении, м2, определяемые по формулам (7).

Sп = dпlо; Sпв = dвlо;

; ;

; ;

, (7)

где dн, dв - ширина полки нижнего и верхнего пояса, м; lo - длина отсека, м; dрк, оп, ркг, ркс - ширина полки стержней решетки, м; ??р - угол между поясом и раскосом в поперечном сечении, град; nрк, nрп - число раскосов, распорок на одной вертикальной грани отсека; nркг - число раскосов на одной горизонтальной грани отсека; nркс - число раскосов в поперечных сечениях четырехгранного отсека; ??r, ??c - углы отклонения от вертикали раскосов, расположенных на горизонтальной грани отсека и в поперечном сечении отсека четырехгранной фермы.

Аэродинамический коэффициент Сх1 определяют по табл. 4.

Таблица 4

Отношение

1,0

1,6

2,0

Отношение

Отношение

1,0

1,5

1,0

1,5

1,0

1,5

0,05

2,55

2,59

2,66

2,70

2,77

2,81

0,10

2,05

2,10

2,20

2,25

2,35

2,40

0,20

1,68

1,73

1,89

1,94

2,10

2,15

2.22. Суммарную горизонтальную расчетную ветровую нагрузку на ферму ригеля и несущие тросы цепной подвески, направленную перпендикулярно оси пути, z1 H, определяют по формуле (8):

, (8)

где - характерная площадь фермы, равная сумме характерных площадей отсеков, м2; (lф - длина фермы, м; Сz1 = 0,3Сх1; Qpi - ветровая нагрузка на i - провод H, определяемая по указаниям пп. 2.12-2.17.

Ветровая нагрузка на ферму ригеля поперечины в направлении, перпендикулярном оси пути, может быть принята равной 30 % от ветровой нагрузки на ферму вдоль оси пути.

Рис. 5. Схема отсека фермы

Наибольшая величина суммарной ветровой нагрузки имеет место при угле скольжения ?? = 15° (рис. 6).

В последней формуле аэродинамический коэффициент лобового сопротивления несущих тросов (контактных проводов) при угле скольжения ?? = 15° определяют по формуле:

Сxi = Cx1 ?? cos2??1 = Cx1??0,932,

где Cxi - аэродинамические коэффициенты лобового сопротивления несущих тросов (контактных проводов) при их поперечном обтекании.

2.23. Максимальное значение ветровой нагрузки следует определять при температуре воздуха минус 5 °С.

Гололедные нагрузки

2.24. Гололедную нагрузку на контактную сеть следует рассчитывать в соответствии с указаниями главы СНиП по нагрузкам и воздействиям и дополнительными требованиями данных Норм.

2.25. Нормативное значение гололедной нагрузки на проводах и тросах, подвешенных на опорах контактной сети, Qгн Н находят по формуле:

Qгн = qгнl, (9)

где qгн - нормативное значение линейной гололедной нагрузки Н/м, определяемой, исходя из толщины стенки гололеда, приведенного к цилиндрической форме с плотностью ?? = 0,9 г/см3.

2.26. Нормативную толщину стенки гололеда bн повторяемостью один раз в 10 лет, приведенную к высоте 10 м над поверхностью земли и диаметру провода 10 мм, следует принимать для различных географических районов по табл. 5. Для малоизученных районов толщину стенки гололеда принимать на район выше. Изменение толщины стенки гололеда в зависимости от диаметра провода следует учитывать по указаниям главы СНиП «Нагрузки и воздействия».

2.27. Местные условия образования гололедно-изморозевого отложения учитывают поправочным коэффициентом Кb к толщине стенки отложения по данным табл. 6.

Рис. 6. Схема положения подвески относительно ригеля

Таблица 5

Гололедные районы СССР (принимаются по СНиП 2.01.07-85)

I

II

III

IV

V

Толщина стенки гололеда, мм

5

10

15

20

25

Таблица 6

№ пп

Вид поверхности

Поправочный коэффициент, Kb

1

Насыпь высотой, м

5

1,1

10

1,20

15

1,30

20

1,40

25

1,45

30 и более

1,50

2

Выемка глубиной, м

5

0,75

7 и более

0,60

3

Незащищенная от ветра, открытая, ровная поверхность

1,1

4

Лес, здания, станционные постройки с высотой более высоты расположения проводов

0,8

2.28. С целью учета особенностей гололедообразования на проводах контактной подвески необходимо:

а) при определении веса гололеда на контактных проводах толщину стенки гололеда принимать равной 50 % толщины стенки, принятой для данного района;

б) при определении веса гололеда на несущем тросе вводить поправочный коэффициент к весу отложения, равный 0,8.

2.29. Нагрузку от гололеда на струнах Рг Н/м, отнесенную к длине пролета, следует определять по выражению:

при одном контактном проводе:

Рг = ????????0,13bн??(1,15bн + dс)10-3; (10)

при двух контактных проводах и шахматном расположении струн:

Рг = ????????0,2bн??(1,15bн + dс)10-3; (11)

где bн - нормативная толщина стенки гололеда; dc - диаметр струны, мм; ?? - плотность гололеда ?? = 0,9 г/см3.

2.30. При различных углах встречи гололедонесущего потока с проводами необходимо принимать следующие значения массы гололеда, %:

при угле встречи 90° (перпендикулярно оси пути) 100

при 0° (вдоль оси пути) 30

Примечания: 1. Указания п. 2.30 необходимо учитывать при расчете жестких поперечин на наиболее невыгодные сочетания ветровых и гололедных нагрузок.

2. Гололедные нагрузки для промежуточных значений угла допускается определять линейной интерполяцией между указанными значениями.

2.31. При расчете конструкций контактной сети необходимо принимать следующие значения коэффициентов надежности по нагрузке к гололедной нагрузке:

а) при расчете по прочности:

для проводов в I, II, III гололедных районах - 1,3; в IV, V - 1,4;

для гололедных отложений на конструкциях опорных, поддерживающих и фиксирующих устройств - 1,3;