Величина * принимается по рис. 1 в зависимости от геометрического параметра отвода и параметра внутреннего давления для .
Рис. 1. График для определения значений коэффициента
Значение параметров и должны определяться по формулам:
; (13)
. (14)
8.10. Коэффициент гибкости тройниковых соединений должен приниматься равным единице.
8.11. Арматура, расположенная на трубопроводе (краны, задвижки, обратные клапаны и т.д.), должна рассматриваться в расчетной схеме как твердое недеформируемое тело.
8.12. В каждом поперечном сечении трубопровода для номинальной толщины стенки трубы и соединительных деталей должны выполняться условия:
- в точках поперечного сечения, где фибровые продольные напряжения, определенные от расчетных нагрузок (), сжимающие:
; (15)
- в точках поперечного сечения, где растягивающие:
. (16)
Значения должны приниматься:
- при действии всех нагрузок силового нагружения - 1,2 ;
- при совместном действии всех нагрузок силового нагружения и нагрузок деформационного нагружения (кроме сейсмических, пучения и морозобойного растрескивания) - ;
- при совместном действии всех нагрузок силового и деформационного нагружения, включая сейсмические воздействия, пучение и морозобойное растрескивание - 1,5 .
При оценке прочности соединительных деталей должны учитываться еще и местные мембранные и изгибные напряжения, определенные от всех нагрузок силового и деформационного нагружения. Значение в этом случае должно приниматься .
Для трубопроводов, транспортирующих сероводородсодержащие продукты, должно приниматься равным по формуле (11).
8.13. Значения коэффициентов интенсификации продольных напряжений должны приниматься:
для прямой трубы - 1;
для отводов - *.
для магистральной части тройникового соединения
; (17)
для ответвления тройникового соединения .
Значение * для отводов принимается по рис. 2 в зависимости от параметров и , определяемых формулами (13) и (14):
Рис. 2. График для определения значений коэффициента *
Значения * для магистральной части и ответвления тройникового соединения принимаются по рис.2 в зависимости от параметров тройникового соединения, определяемых по формулам:
; (18)
. (19)
Примечание:
При определении значений параметров магистральной части тройникового соединения и используются первые индексы, ответвления тройникового соединения и - вторые индексы.
8.14. Проверка общей устойчивости трубопроводов в продольном направлении должна производиться по условию:
, (20)
где - эквивалентное продольное осевое усилие определяется от расчетных нагрузок и воздействий с учетом продольных и поперечных перемещений трубопровода;
- продольное критическое усилие определяется с учетом принятого конструктивного решения трубопровода.
8.15. Устойчивость положения (против всплытия) трубопроводов, прокладываемых на обводненных участках трассы, должна проверяться по условию:
, (21)
где - суммарная расчетная нагрузка на трубопровод, действующая вверх, включая упругий отпор при прокладке свободным изгибом;
- суммарная расчетная нагрузка, действующая вниз (включая собственный вес) (Н/м).
Значения коэффициента надежности устойчивого положения должны определяться по табл. 21.
Таблица 21
Характеристика участка трубопровода |
Коэффициент надежности устойчивого положения, |
Обводненные и пойменные, за границами производства подводно-технических работ, участки трассы |
1,05 |
Русловые участки трассы через реки шириной до 200 м по среднему меженному уровню, включая прибрежные участки в границах производства подводно-технических работ |
1,10 |
Участки трассы через реки и водохранилища шириной свыше 200 м, а также горные реки |
1,15 |
Проверка напряженного состояния и устойчивости надземных трубопроводов
8.16. Надземные трубопроводы должны проверяться на прочность, продольную устойчивость и выносливость при колебаниях в ветровом потоке.
8.17. Продольные усилия и изгибающие моменты в надземных трубопроводах должны определяться в соответствии с общими правилами строительной механики. При этом трубопровод рассматривается как статически неопределимая стержневая система переменной жесткости. Коэффициенты повышения гибкости отводов и тройниковых соединений должны определяться по пп. 8.9 и 8.10.
8.18. При определении продольных усилий и изгибающих моментов в надземных трубопроводах следует учитывать изменения расчетной схемы в зависимости от метода монтажа трубопровода. Изгибающие моменты в бескомпенсаторных переходах трубопроводов необходимо определять с учетом продольно-поперечного изгиба. Расчет надземных трубопроводов должен производиться с учетом перемещений трубопровода на примыкающих подземных участках трубопроводов.
8.19. Балочные системы надземных трубопроводов должны рассчитываться с учетом трения на опорах, при этом применяется меньшее или большее из возможных значений коэффициента трения в зависимости от того, что опаснее для данного расчетного случая.
При наличии изгибающих моментов в вертикальной и горизонтальной плоскостях расчет должен производиться по их равнодействующей. В расчетах необходимо учитывать геометрическую нелинейность системы.
8.20. В каждом поперечном сечении надземного трубопровода для номинальной толщины стенки трубы и соединительных деталей должно выполняться условие (15) и (16).
Значения коэффициентов интенсификации напряжений для отводов и тройниковых соединений должны приниматься согласно п. 8.13.
8.21. При скоростях ветра, вызывающих колебание трубопровода с частотой, равной частоте собственных колебаний, необходимо производить поверочный расчет трубопроводов на резонанс.
Расчетные усилия и перемещения трубопровода при резонансе должны определяться как геометрическая сумма резонансных усилий и перемещений, а также усилий и перемещений от других видов нагрузок и воздействий, включая расчетную ветровую нагрузку, соответствующую критическому скоростному напору.
При расчете на выносливость (динамическое действие ветра) величина понижается согласно указаниям СНиП II-23-81.
8.22. Расчет оснований фундаментов и самих опор должен производиться по потере несущей способности (прочности и устойчивости положения) или непригодности к нормальной эксплуатации, связанной с разрушением их элементов или недопустимо большими деформациями опор, опорных частей, элементов пролетных строений или трубопровода.
8.23. Опоры (включая основания и фундаменты) и опорные части должны рассчитываться на передаваемые трубопроводом и вспомогательными конструкциями вертикальные и горизонтальные (продольные и поперечные) усилия и изгибающие моменты, определяемые от расчетных нагрузок и воздействий в наиболее невыгодных их сочетаниях с учетом возможных смещений опор и опорных частей в процессе эксплуатации.
При расчете опор должна учитываться глубина промерзания или оттаивания грунта, деформаций грунта (пучение и просадка), а также возможные изменения свойств грунта (в пределах восприятия нагрузок) в зависимости от времени года, температурного режима, осушения или обводнения участков, прилегающих к трассе, и других условий.
8.24. Нагрузки на опоры, возникающие от воздействия ветра и от изменений длины трубопроводов под влиянием внутреннего давления и изменения температуры стенок труб, должны определяться в зависимости от принятой системы прокладки и компенсации продольных деформаций трубопроводов с учетом сопротивлений перемещениям трубопровода на опорах.
На уклонах местности и на участках со слабонесущими грунтами должны применяться системы прокладок надземных трубопроводов с неподвижными опорами, испытывающими минимальные нагрузки, например, прокладку змейкой с неподвижными опорами, расположенными в вершинах звеньев по одну сторону от воздушной оси трассы.
8.25. Нагрузки на неподвижные (мертвые) опоры надземных балочных систем трубопроводов должны приниматься равными сумме усилий, передающихся на опору от примыкающих участков трубопровода, если эти усилия направлены в одну сторону, и разности усилий, если эти усилия направлены в разные стороны. В последнем случае меньшая из нагрузок принимается с коэффициентом, равным 0,8.
8.26. Продольно-подвижные и свободно-подвижные опоры балочных надземных систем трубопроводов должны рассчитываться на совместные действия вертикальной нагрузки и горизонтальных сил или расчетных перемещений (при неподвижном закреплении трубопроводов к опоре, когда его перемещение происходит за счет изгиба стойки). При определении горизонтальных усилий на неподвижные опоры необходимо принимать максимальное значение коэффициента трения.
В прямолинейных балочных системах без компенсации продольных деформаций необходимо учитывать возможное отклонение трубопровода от прямой. Возникающее в результате этого расчетное горизонтальное усилие от воздействия температуры и внутреннего давления, действующее на промежуточную опору перпендикулярно оси трубопровода, должно приниматься равным 0,01 величины максимального эквивалентного продольного усилия в трубопроводе.
Проверка прочности трубопроводов при сейсмических воздействиях
8.27. Напряжения от сейсмических воздействий в подземных трубопроводах и трубопроводах, прокладываемых в насыпи, должны определяться как результат воздействия сейсмической волны, направленной вдоль продольной оси трубопровода.
Величина этих напряжений должна определяться по формуле:
. (22)
Значения коэффициентов и должны приниматься по табл. 22, 23 и 24.
Значения величин сейсмического ускорения и скорости распространения продольной сейсмической волны должны приниматься по табл. 25 и 22.
Значение величины преобладающего периода сейсмических колебаний грунтового массива должны определяться при изысканиях.
Таблица 22
Значения коэффициентов защемления трубопровода в грунте и скоростей распространения продольной сейсмической волны
Грунты |
Коэффициент защемления трубопровода в грунте |
Скорость распространения продольной сейсмической волны , м/с |
1 |
2 |
3 |
Насыпные, рыхлые пески, супеси, суглинки и другие, кроме водонасыщенных |
0,50 |
120 |
Песчаные маловлажные |
0,50 |
150 |
Песчаные средней влажности |
0,45 |
250 |
Песчаные водонасыщенные |
0,45 |
350 |
Супеси и суглинки |
0,60 |
300 |
Глинистые влажные, пластичные |
0,35 |
500 |
Глинистые, полутвердые и твердые |
0,70 |
2000 |
Лесс и лессовидные |
0,50 |
400 |
Торф |
0,20 |
100 |
Низкотемпературные мерзлые (песчаные, глинистые, насыпные) |
1,00 |
2200 |
Высокотемпературные мерзлые (песчаные, глинистые, насыпные) |
1,00 |
1500 |
Гравий, щебень и галечник |
См. примеч. 2 |
1100 |
Известняки, сланцы, песчаники (слабовыветренные и сильно выветренные) |
То же |
1500 |
Скальные породы (монолиты) |
То же |
2200 |
Примечание:
1. В таблице приведены наименьшие значения , которые следует уточнять при изысканиях.
2. Значения коэффициентов защемления трубопровода следует принимать по грунту засыпки.
Таблица 23
Значения коэффициентов степени ответственности трубопровода
Характеристика трубопровода |
|
1 |
2 |
Газопроводы I и II класса, нефте-, продуктопроводы I класса |
1,5 |
Газопроводы III класса, нефте-, продуктопроводы II класса |
1,2 |
Газопроводы IV класса, нефте-, продуктопроводы III класса |
1,0 |
Примечание: При сейсмичности 9 баллов и выше, коэффициент для трубопроводов, указанных в поз. 1, умножается дополнительно на коэффициент 1,5.
Таблица 24
Значения коэффициентов повторяемости землетрясений
Повторяемость землетрясений 1 раз |
в 100 лет |
в 1000 лет |
в 10 000 лет |
Коэффициент повторяемости |
1,15 |
1,0 |
0,9 |
Таблица 25
Значения расчетных сейсмических ускорений
Сила землетрясения, баллы |
7 |
8 |
9 |
10 |
Сейсмическое ускорение, м/сек2 |
1,0 |
2,0 |
4,0 |
8,0 |
8.28. При совместном действии всех нагрузок силового и деформационного нагружения, включая сейсмическое воздействие, напряжение от которого определяется по формуле (22), величина в условиях (15)(16) должна удовлетворять условию .