В случае влажных откосов скальных грунтов под слоем металлической сетки укладывают геотекстиль.

ПРИЛОЖЕНИЕ 17

Дорожно-климатические зоны СССР

Рис. 109. Дорожно-климатические зоны на территории СССР

приложение 18

Схематическая карта дорожно-климатического районирования зоны вечной мерзлоты

Рис. 110. Схематическая карта дорожно-климатического районирования зоны вечной мерзлоты

1-1 - северный район низкотемпературных вечномерзлых грунтов (НТВМГ) сплошного распространения; 1-2 - центральный район НТВМГ сплошного распространения; 1-3 - южный район высокотемпературных вечномерзлых грунтов (ВТВМГ) сплошного и островного распространения; 4 - южная граница распространения вечномерзлых грунтов

ПРИЛОЖЕНИЕ 19

Номограмма для определения конечных осадок насыпей дорог на болотах

Номограмма представлена на рис. 111.

Значения показателей и их определение приводятся ниже:

hн - высота насыпи, определяемая по продольному профилю дороги, считая по оси над поверхностью болота вместе с балластной призмой или дорожной одеждой, м;

l - относительная деформация всех слоев торфяной залежи под основанием насыпи при ее расчетном давлении, определяемая по указаниям ГОСТ 23908-79 и 20276-85;

W - средняя величина влагосодержания всех слоев торфяной залежи, определяемая по ГОСТ 5180-84;

Н - глубина болота без учета мощности слоя очеса, м;

sк - конечная осадка насыпи, м.

При расчетах принято: заложение откосов насыпи более 1:1,5; ширина насыпи поверху 5 - 10 м; основание насыпи сложено торфом, деформация которого принимается за счет сжатия при ограниченном боковом расширении.

Рис. 111. Номограмма для определения конечных осадок насыпей на болотах

ПРИЛОЖЕНИЕ 20

Дренажи с трубофильтрами

Трубофильтры изготавливают из крупнопористой бетонной смеси специального состава. В качестве заполнителя используют фракционированный материал, схожий по гранулометрическому составу с крайней наружной обсыпкой дренажных труб.

В трубофильтре сочетаются функции фильтра и водоотводного трубопровода. В дренаже трубофильтры объединены эластичными звеньями или полосками эластичного материала, закрывающими зазоры в стыках. Дренируемая вода свободно и равномерно проходит через всю наружную поверхность фильтрующих стенок трубофильтров в дренажный трубопровод, а соединительные звенья или полоски эластичного материала надежно защищают зазоры стыков от проникания в трубопровод дренируемого грунта.

Крупнопористый фильтрационный бетон имеет коэффициент фильтрации около 500 м/сут. Отдельные песчинки дренируемого грунта могут проникать в поровые канавы бетона на глубину 5 - 10 мм, частично закрывая их живое сечение. В связи с этим при проектировании дренажей из трубофильтров принимается так называемый расчетный коэффициент фильтрации, существенно меньший их начального коэффициента фильтрации. Для практических целей можно принять при контакте трубофильтров с мелкозернистым песком, равным в среднем 30 %, со среднезернистым 50 % и с крупнозернистым 80 % начального коэффициента фильтрации. Размеры трубофильтрации приведены в табл. 51.

Таблица 51

Марка

Размеры трубофильтров, мм

Масса

Разрушающая

трубофильтра

диаметры

длина

средняя, кг

нагрузка, не

внутренний

наружный

менее, МПа

Т-50

50

100

500

3,5

90

Т-100

100

170

500

8

90

Т-150

150

250

500

20

95

Т-200

200

320

500

30

100

ТФ-200

200

320

1000

50

200

ТФ-ЗОО

300

470

1000

123

220

ТФ-400

400

620

1000

212

250

ТФ-500

500

780

1000

338

300

Марка трубофильтра "Т" указывает на его гладкий и соответственно "ТФ" - на фальцевый торец. Цифра в обоих случаях означает размер внутреннего диаметра трубофильтров в мм. Масса крупнопористого фильтрационного бетона условно принята равной 120 МПа.

Фильтрационный бетон должен иметь коэффициент фильтрации 100 - 1200 м/сут.

Трубофильтры диаметром до 200 мм соединяют между собой эластичными звеньями, благодаря которым дренажный трубопровод становится гибким.