При подборе поперечной арматуры перемычки должно быть соблюдено условие

(6)

где Rb — расчетное сопротивление бетона при сжатии, ??w1 и ??b1 — коэффициенты, вычисляемые по СНиП 2.03.01—84.

Прочность нижнего стыка оценивается по формулам:

для левого простенка

N (1 + 0,5l02/l1)/lwi ?? 0,8Rj2t2; (7)

для правого простенка

N (1 + 0,5l02/l2)/lwi ?? 0,8Rj2t2, (8)

где Rj2 — предельное сопротивление стыка под панелью нежилого этажа.

11. При каркасном решении нижних этажей здания наиболее напряженными участками балок-стенок, которые необходимо проверять расчетом, являются следующие:

перемычки (верхние и нижние) в зоне проемов (для прохода людей); они должны быть проверены на поперечную силу и момент, действующие в этом сечении;

участки главных балок-стенок в местах опирания на них второстепенных балок-стенок необходимо проверять на действие поперечной силы и смятие опорных частей;

опорные участки балок-стенок и колонн рассчитывать на смятие.

12. Прогибы балок-стенок, на которые опираются несущие стены здания при каркасной конструкции нижних этажей, рекомендуется ограничивать исходя из предельных взаимных смещений стеновых панелей, равных 1 см. Предельные прогибы ригелей следует принимать по СНиП 2.03.01—84.

13. Для увеличения несущей способности и жесткости системы возможно объединение балок-стенок и ригелей в единую систему при помощи металлических или железобетонных связей по длине зоны контакта.

Несущая система балки-стенки и ригеля может считаться монолитной, если стыковое соединение воспринимает сдвигающее усилие равное или большее, чем усилие, определяемое по формуле

Т = (М — Мb — Мr)/Н, (9)

где М — максимальный момент внешних сил, действующий на систему; Мb, Мr — предельные моменты, воспринимаемые балкой-стенкой и ригелем; Н — расстояние между нейтральными осями балки-стенки и ригеля.

В случае, если условие (9) не выполняется для систем, в которых жесткость ригеля соизмерима с жесткостью балки-стенки, несущую способность системы можно проверять методом предельного равновесия.

Несущая способность системы должна определяться как наименьшее из значений, соответствующих различным нормальным сечениям, наиболее опасными из которых являются: в середине пролета системы, в зоне проема, в местах изменения высоты, толщины сечения и армирования.

14. Для системы, предельное состояние которой определяется образованием шарнира в зоне максимального момента, предельную нагрузку на систему можно определить по формуле

(10)

где q — равномерно распределенная нагрузка, проложенная по верху балки-стенки и соответствующая несущей способности системы по рассматриваемому нормальному сечению; Мb, Мr — предельные моменты, воспринимаемые балкой-стенкой и ригелем в рассматриваемом сечении; М??b — момент в рассматриваемом сечении несущего элемента от нагрузки, приложенной непосредственно к элементу (включая собственный вес балки-стенки);

М??b = qol1(l l1)/2; (11)

l — расчетный пролет системы, определяемый по формуле

l = lo + (c1 + c2)/3; (12)

lo — пролет в свету между опорами; с1, с2 —ширина левой и правой площадок опирания; l1 — расстояние до рассматриваемого сечения; Т1, T2 — предельные сдвигающие силы, воспринимаемые стыком на участках l1 и (l — l1).

15. Расчетную длину колонн (при их расчете на вертикальную нагрузку) рекомендуется принимать в зависимости от жесткости узлов между балками-стенками и колонной, жесткости дисков перекрытий и наличия диафрагм жесткости, но не менее высоты первого этажа. В местах опирания ригелей на колонны необходимо предусмотреть металлические закладные детали в колонне и ригеле, воспринимающие часть опорного момента, величиной не менее 30 кН??м.

Пример расчета. Требуется проверить прочность стеновой панели первого нежилого этажа, показанной на рис. 2 (lw = 6 м).

Рис. 2. Стеновая панель первого нежилого этажа

Исходные данные:

N = 3400 кН. Бетон класса В20 Rb = 11,5 МПа, Rbt = 0,9 МПа. Арматура класса А-III Rs = 355 МПа, Rsw = 255 МПа. Армирование в опорных и пролетном сечениях перемычки одинаково, площадь сечения продольной арматуры As = 942 мм2. Площадь сечения хомутов Asw = 85 мм2. Шаг хомутов s =150 мм.

Прочность стыков: верхнего Rj1 = 4,5 МПа, нижнего Rj2 = 6,5 МПа.

Толщины панелей: жилого этажа tw1 = 180 мм; нежилого этажа tw2 = 220 мм. Высота перемычки h = 800 мм; ho = 760 мм.

Предельные моменты сечения перемычки: M1 = M2 = M.

Высота сжатой зоны х = (355 ?? 942)/(11,5 ?? 220) = 132 мм.

Относительная высота сжатой зоны:

?? = 132/760 = 0,174 < ??R = 0,625.

Предельный момент поперечного сечения М = 11,5 ?? 220 ?? 7602 ?? 0,174(1 0,5 ?? 174) = 253 ?? 106 Н??мм. Проверка выполнения неравенства (2):

Усилие в хомутах на единицу длины перемычки

qsw = 255 ?? 85/150 = 144 Н/мм.

Проверка выполнения неравенства (3):

Для проверки выполнения неравенства (6) вычисляем

??w1 = l + 5 ?? 20 ?? 104/(24 ?? 103)85/(220 ?? 150) = 1,108;

тогда ??b1 = 1 — 0,01 ?? 11,5 = 0,885;

Проверка прочности нижнего стыка по формуле (8):

3400000/6000 [1 + 0,5(2400/1800)] = 944 < 0,8 ?? 6,5 ?? 220 = 1140 Н/мм.

Кроме проверки прочности необходимо проверить ширину раскрытия трещин.

ПРИЛОЖЕНИЕ 4

РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ ПОДАТЛИВОСТИ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ НЕСУЩИХ КОНСТРУКЦИЙ

1. В настоящем приложении приведены рекомендации по определению коэффициентов податливости соединений сборных бетонных и железобетонных элементов, а также швов бетонирования стен из монолитного бетона, стыков между сборными и монолитными конструкциями жилых зданий и перемычек.

Коэффициентом податливости соединения называется величина, численно равная деформации соединения, вызванной единичной сосредоточенной или распределенной силой.

Коэффициенты податливости соединений при растяжении ??t, сдвиге ????, коэффициенты податливости перемычек при перекосе ??tin определяют от сосредоточенных сил; коэффициенты податливости при сжатии ??с и повороте ???? — от распределенных сил.

Для соединений, имеющих несколько характерных стадий работы (например, до образования трещин в соединении и после), коэффициенты податливости (жесткости) следует принимать для каждой стадии дифференцированно. Деформация соединения в этом случае определяется как сумма деформаций от приращений усилий на отдельных этапах.

Основные виды соединений и размерность коэффициентов податливости приведены в табл. 1.

Таблица 1

Коэффициент податливости

Обозначение

Размерность

Схема соединения

При растяжении

??t

мм/Н (см/кгс)

При сжатии

??с

мм3/Н (см/кгс)

При сдвиге

??t

мм/H (см/кгс)

При повороте

????

1/МН (1/кгс)

При соединении элементов системой связей следует различать следующие случаи их расположения:

последовательное (рис. 1, а, б); параллельное (рис. 1, в, г); смешанное (рис. 1, д, е).

Рис. 1. Схема соединений

а, б — последовательные; в, г — параллельные; д, е — смешанные

последовательное (рис. 1, а, б); параллельное (рис. 1, в, а); смешанное (рис. 1, д, е).

Коэффициенты податливости ?? соединения, состоящего из системы сосредоточенных связей, определяют по формулам:

в случае последовательного расположения связей

(1)

в случае параллельного расположения связей

(2)

где n — число связей в соединении; ??i — коэффициент податливости i-й связи.

В смешанном случае выделяют группы однородно расположенных связей и для каждой из них по формулам (1) или (2) вычисляют коэффициенты податливости, в результате чего систему приводят к случаю последовательного или параллельного расположения связей.

Для определения коэффициента податливости соединения, имеющего сосредоточенные и распределенные связи, последние заменяют эквивалентными по жесткости, сосредоточенными.

2. Коэффициент податливости при растяжении ??t соединения сборных элементов в виде сваренных между собой и замоноличенных бетоном арматурных выпусков определяют по формуле

??t = 2aсrс/??s, (3)

где acrc — ширина раскрытия трещин, нормальных к арматурной связи, вызванных растягивающими напряжениями в связи ??s; значение ширины раскрытия трещин рекомендуется определять по указаниям норм проектирования железобетонных конструкций.

Деформации растяжения связей в виде петлевых выпусков диаметра 8 — 12 мм, соединенных между собой скобами из арматурной стали и замоноличенных бетоном класса не ниже В 15, можно определять как для сварных связей, площадь которых соответствует площади поперечного сечения арматуры петлевого выпуска. Диаметр арматуры скобы должен быть при этом не менее диаметра петлевого выпуска.

3. Коэффициент податливости при сжатии соединения элементов определяют в зависимости от конструктивного типа стыка. Для контактного горизонтального стыка, в котором сжимающую нагрузку передают через слой раствора, толщиной не более 30 мм, коэффициент податливости при сжатии ??с,соn определяют по формуле

??с,соn = (??т + hcon/Eb,w)А/Асoп, (4)

где ??т — коэффициент податливости горизонтального растворного шва при сжатии, определяемый по п. 4 настоящего приложения; hcon —высота контактного участка стыка; Eb,w —модуль деформации бетона стены; А — площадь горизонтального сечения стены в уровне расположения проемов; Асoп — площадь контактного участка стыка, через которую передают сжимающую нагрузку.

Для монолитного горизонтального стыка, в котором сжимающая нагрузка передается через растворный шов в уровне верха перекрытия и слой бетона, коэффициент податливости при сжатии Ас,топ определяют по формуле

??с,топ = (??m + ??топ + hтоп/Eтоп)A/Aтоп, (5)

где hmon — высота (толщина) слоя монолитного бетона в стыке; Eтоп —начальный модуль упругости бетона замоноличивания стыка; Атoп — площадь монолитного участка стыка (за минусом опорных участков перекрытий и других ослаблений сечения стыка); ??топ — коэффициент податливости, вычисляемый по п. 5 настоящего приложения.

Для платформенного горизонтального стыка, в котором сжимающая нагрузка передается через опорные участки плит перекрытий и два растворных шва, уложенные между плитами перекрытий и соединяемыми элементами, коэффициент податливости при сжатии ??c,pl определяют по формуле

??c,pl = (????m + ??????m + hpl/Epl)A/Apl, (6)

где ????m, ??????m — коэффициенты податливости при сжатии соответственно верхнего и нижнего растворных швов; hpl — высота (толщина) опорной части плиты перекрытия; Epl — начальный модуль упругости бетона опорной части плиты перекрытий; Apl —площадь платформенных участков стыка, через которые передается сжимающее усилие; при неодинаковых размерах опорных площадок вверху и внизу плиты перекрытия принимается их среднее значение.

Для платформенно-монолитного стыка, в котором сжимающая нагрузка передается через платформенный участок площадью Apl и монолитный участок площадью Атoп, коэффициент податливости при сжатии A c,pl,mon определяют по формуле

??c,pl,mon = l/(1/??c,pl + l/??c,mon), (7)

где ??c,mon, ??c,pl — коэффициенты податливости при сжатии, вычисляемые соответственно по формулам (5) и (6).

Для контактно-платформенного стыка, в котором сжимающая нагрузка передается через контактный участок площадью Асoп и платформенный участок площадью Apl, коэффициент податливости при сжатии ??с,соп,pl вычисляют по формуле

??с,соп,pl = 1/(1/??с,соn + 1/??c,pl), (8)

где ??с,соn, ??c,pl — коэффициенты податливости при сжатии, вычисляемые соответственно по формулам (4) и (6).

4. Коэффициент податливости при сжатии горизонтального растворного шва ??m определяют в зависимости от способа укладки и прочности раствора и среднего значения сжимающих напряжений в растворном шве ??m.

При кратковременном сжатии для раствора прочностью на сжатие 1 МПа и более при толщине шва 10 — 20 мм коэффициент податливости растворного шва ??m рекомендуется определять по формулам

при ??m ?? 1,15R2/3m;

??m = 1,5 ?? 10-3 R-2/3mtm; (9)

при ??m ?? 1,15R2/3m, но не более 2R2/3m;

??m = 5 ?? 10-3 R-2/3mtm;(10)

где ??m — среднее значение сжимающих напряжений в растворном шве, МПа; Rm — кубиковая прочность раствора, МПа; tm — толщина растворного шва, мм; ??m — коэффициент податливости растворного шва при кратковременном сжатии, мм3/Н.

Коэффициенты податливости растворных швов при кратковременном сжатии при расчете на нагрузки, действующие в стадии эксплуатации здания, разрешается принимать по табл. 2.

Таблица 2

Среднее значение сжимающих напряжений в растворном

Коэффициент податливости растворного шва толщиной 20 мм при кратковременном сжатии ??m (мм3/Н) при кубиковой прочности раствора (МПа)

шве ??m, МПа

1

2,5

5

10

20

При ??m ?? ??1 = 1,15 R2/3m

0,03

0,016

0,01

0,0065

0,004

При ??1 < ??m = 2R2/3m

0,1

0,054

0,034

0,021

0,013

Для горизонтальных швов бетонирования стен из монолитного бетона классов В7,5 — В15 коэффициент податливости при сжатии принимается равным: для тяжелого бетона 0,01 мм3/Н(1 ?? 10-4 см3/кгс); для легкого бетона 0,02 мм3/Н (2 ?? 10-4 см3/кгс).

При сжатии горизонтального растворного шва или шва бетонирования стены из монолитного бетона длительной нагрузкой коэффициент податливости разрешается вычислять по формуле

??m,t = ??m(l + ??t), (11)

где ??m — коэффициент податливости шва при кратковременном сжатии; ??t — характеристика ползучести шва, принимается равной 1.

5. Для горизонтального шва на прокладках («сухой» шов) коэффициент податливости при кратковременном сжатии определяют по формуле