,

где - параметр, характеризующий удельные нормальные силы пучения, кН/м2; принимается равным: 200, 400, соответственно для слабо-, среднепучинистых грунтов;

- угол наклона боковых граней сваи к вертикали, град.

Nа - сила сопротивления талого грунта выдергиванию сваи;

;

су - расчетное сцепление уплотненного грунта, МПа, принимается в соответствии с ВСН 26-84.

Остальные обозначения те же, что в п. 4.2.

4.4. Для выполнения требования (4.2) необходимо соблюдать условие

N > Pб.от.,(4.6)

где Рб.от. - несущая способность боковой поверхности сваи после оттаивания грунта при осадке S, равной подъему сваи. Для буронабивной сваи условие (4.6) выполняется, если

(4.7)

где - коэффициент условий работы, учитывающий увеличение сопротивления грунта на боковой поверхности сваи ниже зоны промерзания за счет частичного его обезвоживания,

К0, S0, Рб.пр, - те же значения, что в п. 3.2.

Для пирамидальных свай условие (4.6) удовлетворяется, если

,(4.8)

где ha, df, Fd - те же значения, что в п. 3.1, 4.2.

4.5. Относительная разность деформаций пучения свай зданий стоечно-балочной конструкции, зданий с деревянными конструкциями определяется по формуле

,(4.9)

где - максимальная разность подъемов двух соседних свай, м;

х - расстояние между осями свай, м.

При определении попарно рассматриваются соседние сваи. При этом подъем ненагруженной поверхности грунта принимается изменяющимся по длине (ширине ??) здания в соответствии с зависимостью

,(4.10)

где hfmax, hfmin - подъемы ненагруженной поверхности грунта, м, соответствующие экстремальным значениям расчетной предзимней влажности грунта на площадке строительства, определяемые в соответствии с ВСН 29-85;

xi - расстояние между осями рассматриваемой сваи и крайней левой в фундаменте стены здания или его отсека;

L - расстояние между осями крайних свай в фундаменте стены здания (отсека здания), м.

4.6. Относительная деформация свай зданий с несущими стенами из кирпича, блоков, панелей (относительный прогиб, выгиб) определяется по формуле

,(4.11)

где hл, hср - подъемы соответственно крайней левой и средней свай, м; определяются в соответствии с п.п. 4.2, 4.3.

Примечание. В том случае, когда непосредственно под серединой стены здания (отсека здания) свая отсутствует, за hср следует принимать подъем стены в сечении, отстоящем на расстоянии L/2 от крайней левой сваи.

4.8. Дополнительные нагрузки на сваи определяются из совместного решения уравнений

(4.14)

;(4.15)

;(4.16)

где hл, hi - подъемы крайней левой и i-й сваи с учетом дополнительной нагрузки, м; определяются по одной из формул (4.12...4.I3) в зависимости от типа сваи;

?? - угол склона оси условной балки к горизонтали на крайней левой опоре (сваи), рад;

EJ - приведенная жесткость на изгиб условной балки (надфундаментных конструкций); определяется согласно ВСН 29-85;

pi - нагрузка на сваю, находящуюся на расстоянии xi от крайней левой сваи. Остальные обозначения прежние.

Примечания: 1. Уравнения типа (4.14) составляют для всех свай, исключая крайнюю левую.

2. При симметричной относительно оси стены системе уравнения (4.15) тождественно равны уравнениям (4.14). В этом случае недостающие уравнения составляют на основе равенства перемещений стены и свай, расположенных справа от оси симметрии.

3. При составлении уравнений (4.14...4.16) все дополнительные силы принимаются положительными, действующими сверху вниз на сваи и снизу вверх на условную балку.

Направление дополнительных сил и их значения определяют в результате решения системы уравнений. Зная значения и знак дополнительных сил, по формулам (4.12, 4.13) можно определить подъемы свай, а по формуле (4.11) - относительную деформацию системы в целом,

5. Устройство свайных фундаментов в пучинистых грунтах

5.1. При возведении свайных фундаментов следует руководствоваться требованиями СНиП Ш-9-74, СНиП Ш-4-80, другими общесоюзными документами.

5.2. В пучинистых грунтах следует более ответственно выполнять отвод паводковых, ливневых и грунтовых вод при производстве планировочных работ.

5.3. Основные требования к приемке пирамидальных свай:

не допускаются отколы и раковины в торцах свай;

смещение острия свай от центра должно быть не более 10 мм;

отклонение размеров поперечного сечения допускается ??10 мм, но без уменьшения плошали поперечного сечения, торцы свай должны быть перпендикулярны продольной оси сваи.

5.4. Для повышения точности погружения свай рекомендуется забивку свай производить в лидерные скважины.

5.5. Предельно допустимые отклонения при производстве свайных работ:

в плане не более ??5 см;

по высоте: перебивка до 3 см;

недобивка не более 1 см.

5.6. Погружение пирамидальных свай ниже поверхности земли осуществляется с помощью приспособления, показанного в приложении 8 ВСН 26-84.

5.7. Пирамидальные сваи в выштампованном ложе рекомендуется изготовлять с помощью устройств, приведенных в приложении.

5.8. При возведении свай в выштампованном ложе и буронабивных свай целесообразно бетонировать не позже суток после устройства котлованов и скважин.

5.9. Погружение свай в зимних условиях следует производить с предварительным оттаиванием мерзлого грунта на всю глубину промерзания и площадью не менее трех сторон верхнего сечения сваи. Забивка свай в мерзлый грунт не допускается.

6. Примеры расчета свайных фундаментов по деформациям пучения грунта.

Пример 1. Требуется рассчитать фундаменты из буронабивных свай для одноэтажного крупнопанельного дома. Наибольшая длина стены составляет 12,6 м, наименьшая жесткость на изгиб - 2??10 кН??м2. Расчетная нагрузка на фундамент составляет 50 кН/м. Верх свай расположен на 0,1 м ниже поверхности.

Анализ грунтовых условий, выполненный в соответствии с ВСН 29-85, показал: грунты площадки строительства - среднепучинистые тугопластичные суглинки плотностью ?? = 1,95 т/м3. Модуль деформации грунта Е = 2,9 МПа, коэффициент Пуассона ?? = 0,30, показатель текучести JL = 0,31, угол внутреннего трения ??I=21??, удельное сцепление CI= 32 кПа, расчетная глубина промерзания d = 1,55 м. Максимальный расчетный подъем грунта на глубине 0,1 м от поверхности на площадке строительства hf max =8,5 см, hfmin =2,0 см. Подъем определен по формуле ha = hf(1- а/df) (см.п.4.2) при hfmax = 9,15 см и hfmin =2,13 см. Последние вычислены в соответствии с ВСН 29-85.

Определим несущую способность буронабивной сваи диаметром 0,5м, длиной 3,0 м. Входящие в формулу (3.2) параметры и коэффициенты равны: коэффициент бокового давления бетонной смеси - 0,9; удельный вес бетонной смеси - 22 кН/м3; длина участка сваи, на котором давление бетонной смеси на стенки скважины линейно возрастает с глубиной, - 2 м; относительная усадка бетона при твердении в контакте с грунтом - 0,003; среднее давление на контакте боковой поверхности сваи с грунтом равно

Pср = ????.c.????.c.(1-l0/2l)l0 - ??уE/(1 - ??) = 0,9??22??(1 - 2/2??3)??2 - 0,0003??2,900/(1 + 0,3) = 25,73 КПа.

Коэффициент, учитывающий упрочнение грунта при бетонировании - 1,3; удельное сцепление грунта с учетом упрочнения при бетонировании сваи - 41,6 кПа; угол внутреннего трения с учетом упрочнения грунта при бетонировании - 27 град; предельная несущая способность боковой поверхности буронабивной сваи

Р??.пр. = ??dl(Pco. tg ??1 + c1) = 3,14??0,5??3??(25,73 tg 27° - 41,6) = 257,8 кН.

Предельно допустимая средняя осадка фундаментов малоэтажных зданий - 10 см; коэффициент, учитывающий нарастание осадки по времени, - 0,4; коэффициент пропорциональности, равный отношению нагрузки на пяту сваи к общей нагрузке при предельной осадке, - 0,4; расчетная несущая способность короткой буронабивной сваи

С учетом коэффициента надежности расчетная вертикальная нагрузка не должна превышать 227,6 кН.

Таким образом, условие (3.1) удовлетворяется.

Исходя из полученной несущей способности, принимаем четыре равнонагруженные сваи вдоль стены. При этом расстояние между сваями Х = 3,15 м, а крайние левая и правые сваи размещены на 1,575 м от соответствующих углов дома нагрузка на сваю составляет 157,5 кН.

Определяем подъем буронабивной сваи.

Расчет выполняем при максимальном пучении грунта ha max = 8,5 см по формуле (4.4). Предварительно определяем параметры: коэффициент ?? = 0,3 м-1/2; сопротивление грунта по боковой поверхности сваи

f = pc tg ??1 + c1 =

= 25,73 tg 27° + 41,6 = 54,71 кПа;

нормативные удельные касательные силы пучения в среднепучинистых грунтах равны 90 кПа; собственный вес сваи

G = ??d2l????.c./4 =

= 3,14??0,52??3??22/4 = 13 кН;

Обобщенная сила

Подъем буронабивной сваи равен

Так как попускаемый подъем свай крупнопанельных зданий равен 2,5 см (см. табл. ), то условие (4.1) удовлетворяется.

Определим осадки свай после оттаивания грунта. Предварительно определим коэффициент

??1 = 1,2 - 0,2?? (df - а)/l =

= 1,2 - 0,2 (1,55 - 0,1)/3 = 1,1.

Проверку условия (4.2) выполним по формуле (4.7).

Таким образом, условие (4.2) не удовлетворяется, т.е. свая не возвратится в исходное положение.

Очевидно, что уменьшение длины сваи позволит снизить несущую способность боковой поверхности сваи так, что условие (4.2) выполнится. Однако при этом условие (4.1) не удовлетворяется. Целесообразно уменьшить диаметр сваи.

При d = 0,35 м и l = 3 м расчетная вертикальная нагрузка, допускаемая на сваю, составляет 159,3 кН, что больше заданной 157,5 кН. Обобщенная сила N0= 171,4 кН, выпучивание h = 6 мм и условие (4.7) удовлетворяется:

Определим относительную деформацию фундамента из буронабивных свай.

Вдоль стены расположены 4 сваи на расстоянии 3,15 м друг от друга.

Принимаем подъем грунта у крайних свай равным 85 мм, а у средних - 20 мм. Тогда для средних свай обобщенная сила N0=155,41 кН (слабопучинистый грунт), расчетное выпучивание средних свай равно

Относительная деформация фундамента без учета жесткости конструкции по формуле (4.9) равна

что больше предельной, принимаемой для панельных зданий 0,00035.

Выполним расчет с учетом жесткости конструкций. Найдем дополнительные усилия на сваи, возникающие под влиянием надфундаментных конструкций.

Поскольку система симметрична относительно середины стены здания, неизвестны дополнительные усилия P1 и Р2, а также подъемы свай h1, и h2 и угол поворота оси фундамента ??. Для определения этих неизвестных составим уравнения совместности деформаций (4.14), уравнение равновесия всех сил и их моментов (4.15) - (4.16) и уравнения (4.12).

p1 + p2 + p2 + p1 = 0.

p13x +p22x +p2x = 0.

Эта система уравнений сводится к следующему:

p2 = -p1

Это нелинейное уравнение решаем путем подбора p1. Подставим в него значения соответствующих параметров:

Сила p1 = 138 кН удовлетворяет этому уравнению с точностью 0,1%.

Подъем свай составляет

Сравним h2, полученное по формуле (4.14). При этом угол поворота

0,0042 - 6,85??10-4??3,15 +138??3,153/6??2??106 = 0,0024 м.

Таким образом, перемещения свай найдены точно. Относительная деформация фундамента с учетом жесткости конструкций равна (п.4.11)

что предельно допускаемой??u = 0,00035. Определим подъем середины стены:

Тогда относительная деформация фундамента равна

Следует отметить, что ввиду р2 > N следует предусмотреть жесткое крепление буронабивных свай в середине стены с панелями. Причем крепление следует рассчитать на растягивающее усилие, равное р2 - N = 9,5 кН.

Пример 2. Требуется запроектировать фундамент из пирамидальных свай длиной 3 м и размером вверху 0,6 м, внизу - 0,1 м. Параметры стены дома, нагрузка и характеристики грунтов такие же, как в предыдущем примере.

Верх свай также заглублен на 0,1 м ниже поверхности грунта, как и в примере 1.

Несущая способность свай, полученная в результате статических испытаний, составила 360 кН.

Вдоль стены принимаем 3 сваи. Расстояние между сваями Х = 6,3 м. Причем на крайние сваи приходится нагрузка 157,5 кН, а на среднюю - 315 кН.

Определим подъемы пирамидальных свай.

В случае максимального пучения грунта hf max= 91,5 мм интенсивность пучения превышает 0,035, и грунт классифицируется как среднепучинистый. Поэтому параметр ??и = 90 кПа и ??и = 400 кПа. Геометрические характеристики сваи имеют следующие значения:

b = 0,6 м; l = 3 м, tg ?? = 0,0833; ?? =4°46. Вес сваи G = 10,8 кН. Ее заглубление a = 0,1 м. Вычислим параметры, входящие в формулу (4.5). Коэффициент ?? = 0,14 + 2 (df - a)/l2 =

= 0,14 + 2(1,55 - 0,1)/32 = 0,462.

Сила сопротивления талого грунта выдергиванию сваи

Na = 4(l - df + a)[b - tg??(l +df - a)]cу =

= 4(3 - 1,55 + 0,1)[0,6 - 0,083(3 + 1,55 - 0,1)]51,2 = 72,7 кH.

Здесь удельное сцепление уплотненного грунта су получено в соответствии с BCН 26-84. Для глинистых грунтов с показателем текучести 0,2 < JL ?? 0,5 су = 1,6 сI = 1,632 = 51,2 кПа.

Обобщенная сила N1, действующая на крайние сваи, равна

N1 = [??и + ??и(df - a)tg??][b - (df - a)tg??] + G + Na =

= [90 + 400(1,55 - 0,1)0,083][0,6 - (1,55 - 0,1)0,083](1,55 - 0,1) +

+ 10,8 + 72,7 = 187 кН.

Подъем пирамидальной сваи определим по формуле (4.5). Подъем крайних свай равен

что меньше предельного значения hu = 25 мм.

Так как наибольшие относительные деформации наблюдаются при минимальном пучении грунта около наиболее нагруженной сваи и максимальном - около менее нагруженной, рассмотрим случай с ha = 20 мм и Ncр = 315 кН. При этом интенсивность пучения составляет 0,014 и, соответственно, грунт относится к слабопучинистому. Параметры ??и = 70 кПа, ??и = 200 кПа. Обобщенная сила N1ср = 144,4 кН, а подъем средней сваи hср = 2,9 мм.

Таким образом, условие (4.1) удовлетворяется. Проверку условия (4.2) выполним по формуле (4.8). Для средней сваи

условие (4.2) справедливо.

Для крайних свай (4.2) также удовлетворяется.

Определим относительную деформацию фундамента из пирамидальных свай.

Без учета влияния жесткости конструкции относительная деформация по формуле (4.11) равна

Она превышает предельное значение, равное для панельных званий 0,00035.

Выполним расчет с учетом жесткости конструкций. Согласно выражениям (4.14)... (4.16) составим уравнения равновесия и совместности деформаций, в которых неизвестны дополнительные усилия Рк, возникающие на крайней и средней сваях под влиянием надфундаментных конструкций