а) на I ?? d-диаграмму наносятся известные параметры Iн, tн наружного воздуха ?? точка 1 (рис. 11, 12 и 13);

воздуха, поступающего в испарительный кондиционер (рециркуляционного из помещения, рис. 11; наружного, рис. 12; вытяжного из технологических помещений, рис. 13) ?? точка 5;

б) по I ?? d-диаграмме определяют начальную температуру воздуха, поступающего в приточный кондиционер tc2 = tн + 1,5??С;

температуру мокрого термометра tми и температуру точки росы tри воздуха, поступающего в испарительный кондиционер;

в) вычисляют критерий М3с при известных величинах tc2, tми, tри, см. п. 9 приложения 2 к настоящей Инструкции.

г) вычисляют критерий Rс по диаграмме рис. 14, предварительно определив разность tри ?? tми, принимая tp = tри, tвн = tми;

д) вычисляют величину комплекса (1 = М3сRс);

е) определяют величину критерия

по уравнениям табл. 1 или по графику на рис. 10 при известных (1 + М3сRс) и выбранном типе БСКВ;

ж) вычисляют температуру воздуха, подаваемого в помещения, после приточного кондиционера

tс4 = tc2 ?? (tc2 ?? tри);

з) графически решение обратной задачи показано на рис. 10 пунктирными линиями.

19. Для определения производительности системы по воздуху и воде вычисляют:

а) разность теплосодержаний приточного и внутреннего воздуха

??I = (I13 ?? I4);

б) расход воздуха Gпр (кг/ч), необходимого для снятия теплоизбытков Qпом (ккал/ч) в помещении:

;

в) расход воздуха в испарительном кондиционере, принимая его равным расходу воздуха в приточном кондиционере,

Gисп = Gпр;

г) расход воды в малом контуре циркуляции

WМК = Gисп ?? ВМК = Gисп ?? 1,5;

д) расход воды в большом контуре циркуляции

WБК = Gисп ??ВБК + Gисп ?? 1,8,

где ВБК ?? коэффициент орошения в камере БК

ВБК + + .

Аналитический метод расчета

20. С помощью аналитического метода рассчитываются системы БСКВ при различных производительностях по воздуху (в том числе при отличных от номинальных по ряду Кт и при неравных производительностях приточных и испарительных кондиционеров).

Этот метод применим к системам, компонуемым из типовых секций Кт, а также к системам из оборудования, серийно выпускаемого промышленностью.

21. При применении аналитического метода расчета БСКВ предварительно должны быть известны:

параметры наружного воздуха;

параметры воздуха, поступающего в приточный и испарительный кондиционеры;

количество воздуха, поступающего в приточный и испарительные кондиционеры;

температура охлажденного воздуха в приточном кондиционере (для решения прямых задач см. пп. 14 и 15 прил. 2 к настоящей Инструкции);

конструктивные и гидродинамические характеристики системы (для решения обратных задач см. пп. 17 и 18 прил. 2 к настоящей Инструкции).

Для теплообменников I, II и III должны быть известны: тип секций воздухонагревателей кондиционера, тип секций поверхностных воздухоохладителей или марка калориферов;

воздухоохлаждающая поверхность Fохл (м2) каждого теплообменника; живое сечение для прохода воды ?? (м2) каждого теплообменника; живое сечение для прохода воздуха fж (м2) каждого теплообменника; условные коэффициенты орошения теплообменников

,

где W ?? расход воды, проходящей через теплообменник, кг/ч;

G ?? расход воздуха, кг/ч.

Для оросительных камер малого и большого контуров циркуляции должны быть известны: типы оросительных камер, число и диаметры форсунок.

Примечание. Коэффициент Вусл должен находиться в пределах от 0,6 до 1,8. Оптимальные условные коэффициенты орошения для теплообменников I, II, III соответственно 1,2; 1,5; 0,6.

22. Сущность аналитического метода расчета малого и большого контуров циркуляции БСКВ с учетом требований в пп. 5 и 6 прил. 2 к настоящей Инструкции заключается в следующем:

а) предварительно рассчитывают теплообменники I и III большого контура циркуляции с целью нахождения параметров охлажденного в них воздуха, который поступает в теплообменные аппараты малого контура циркуляций (теплообменник II и оросительную камеру МК);

б) рассчитывают теплообменные аппараты малого контура циркуляции и определяют температуру охлажденного воздуха tс4 и параметры воздуха после оросительной камеры МК, которые являются начальными для оросительной камеры большого контура циркуляции;

в) рассчитывают оросительную камеру большого контура циркуляции с целью определения температуры холодной воды, необходимой для работы теплообменников I и III;

г) предварительно определяют температуру холодной воды, поступающей в теплообменники I и III, а также параметры воздуха, охлажденного в этих теплообменниках, в соответствии с указаниями п. 15 а ?? г и з прил. 2 к настоящей Инструкции.

При неравенстве количеств воздуха, проходящего в приточном и испарительном кондиционерах, величина ??Iисп находится по выражению:

.(1)

Последовательность расчета

23. Наносят на I ?? d-диаграмму параметры воздуха, поступающего в приточный и испарительный кондиционеры в соответствии с п. 16а и б прил. 2 к настоящей Инструкции.

24. Предварительно задаются температурой охлажденного воздуха tс4 (рис. 9) в соответствии с указаниями пп. 1 и 14 прил. 2 к настоящей Инструкции и определяют начальную температуру воды, поступающей в теплообменники I и III (точка 11 на рис. 9) в соответствии с п. 15 а ?? в того же приложения.

25. Рассчитывают теплообменник I. Расчет сводится к нахождению температуры охлажденного воздуха tc3 (рис. 9). При расчете теплообменника определяют:

а) критерий глубины ;

б) отношение живых сечений ;

в) весовую скорость воздуха в живом сечении теплообменника

;(2)

г) расход воды в теплообменнике

W = GпрВусл;(3)

д) скорость воды в трубках теплообменника

;(4)

е) величину начальной движущей силы теплообмена (tc ?? tвн), приняв tвн равной начальной температуре воды t11, поступающей в теплообменник, а tc = tc2;

ж) величину охлаждения воздуха в теплообменнике ??tc по уравнению

,(5)

где С ?? коэффициент, для перекрестного движения контактирующих сред С = 0,96 ?? 0,97, для противоточного движения сред С = 1.

Примечание. Уравнение (5) справедливо для расчета спирально-навивных теплообменников (секций подогрева или охлаждения) центральных кондиционеров Кт или Кд. При расчете теплообменников приточного кондиционера из пластинчатых калориферов полученные по уравнению (5) значения ??tc должны быть уменьшены на 5??10 %.

з) температуру охлажденного в теплообменнике воздуха (точка 3 на рис. 9)

tc3 = tc2 ?? ??tc;

и) конечную температуру отепленной воды tвк, используя уравнение теплового баланса для теплообменника (точка 12 на рис. 9)

Gпр(tc2 ?? tc3) = Wcв(tвк ?? tвн),(6)

,(7)

к) сопротивление теплообменника по воздуху в зависимости от типа теплообменника:

для теплообменников со спирально-навивными крупными гофрами (секции кондиционеров)

H = 0,0866z(v??)1,87,(8)

для калориферов КВБ

H = 0,28z1(v??)1,65,(9)

для калориферов К4ВП

H = 0,175z1(v??)1,72,(10)

где z ?? число рядов труб теплообменника по ходу воздуха;

z1 ?? число калориферов по ходу воздуха.

26. Рассчитывают теплообменник III. Расчет сводится к нахождению по уравнению (5) температуры охлажденного воздуха tс6 (рис. 9).

Последовательность расчета теплообменника III аналогична приведенной в п. 25 прил. 2 к настоящей Инструкции. Начальная температура воды, поступающей в теплообменник III, принимается равной t11 (точка 11 на рис. 9), а в уравнении (5) температура tc = tс5.

27. Рассчитывают теплообменник II. Расчет сводится к определению начальной температуры воды (точка 9 на рис. 9), необходимой для охлаждения приточного воздуха до tс4 (точка 4 на рис. 9).

При расчете:

а) начальную температуру воздуха tс3 принимают равной температуре охлажденного воздуха в теплообменнике I;

б) вычисляют критерий глубины и отношение живых сечений ;

скорости воздуха v?? и скорости воды ?? определяют по формулам (2) и (4) п. 25;

в) определяют величину охлаждения воздуха ??tcII и перепад теплосодержаний ??III (рис. 9)

??tcII = (tc3 ?? tc4),

??III = (tc3 ?? tc4) = I3 ?? I4;(11)

г) определяют начальную движущую силу теплообмена (tc ?? tвн) из уравнения (5);

д) определяют начальную температуру воды t9, поступающей в теплообменник II (точка 9 на рис. 9),

t9 = tc3 ?? (tc ?? tвн);

е) определяют конечную температуру t10 отепленной воды после теплообменника II (точка 10 на рис. 9) по уравнению (7) и по п. 25к вычисляют сопротивление теплообменника проходу воздуха.

28. Рассчитывают оросительную камеру МК. Расчет заключается в определении коэффициента орошения ВМК, необходимого для требуемого охлаждения воды, циркулирующей в теплообменнике II.

При расчете оросительной камеры МК должны быть известны:

начальная температура воды tвн, которая равна температуре отепленной воды из теплообменника II (точка 10 на рис. 9);

конечная температура tвк охлажденной воды, которая равна начальной температуре воды, поступающей в теплообменник II (точка 9 на рис. 9);

начальные параметры воздуха (температура tс и точка росы tp) перед оросительной камерой МК. Эти параметры соответствуют конечным параметрам воздуха после теплообменника III (точка 6 на рис. 9).

Расчет оросительной камеры на режимах охлаждения воды проводится по уравнению

,(12)

где ?? критерий относительного охлаждения воды;

?? температурный критерий;

?? коэффициент орошения;

А ?? опытный коэффициент.

На I ?? d-диаграмме строят процесс сухого охлаждения воздуха в теплообменнике III (точки 5 и 6 на рис. 9) и определяют:

а) температуру точки росы tри и содержание воздуха I6 перед оросительной камерой МК;

б) критерий относительного охлаждения воды

;(13)

в) температурный критерий

;(14)

г) критерий R по диаграмме на рис. 14, предварительно определив разность tp ?? tвн (рис. 9), принимая tp = tри и tвн = t10;

Рис. 14. Диаграмма для определения критерия R

R = 1+2,34а; ,

где tp ?? температура точки росы; tвн ?? температура распыляемой воды, Рn; Рвн ?? парциальные давления водяных паров в состоянии насыщения, мм. рт. ст.

Примечание. По этой диаграмме определяется и величина критерия Rc при tp ?? tвн = tри ?? tми, см. п. 9 прил. 2.

д) коэффициент орошения ВМК по номограмме на рис. 15 или по формулам в зависимости от диаметра форсунок

при dф = 3,5 мм,(15)

при dф = 4,5 ?? 5 мм;(16)

Рис. 15. Номограмма для определения величины охлаждения воды в оросительных камерах составлена по формулам:

для форсунок с dф = 3,5 мм

для форсунок с dф = 5 мм

; ; ??tp = tc ?? tp;

R = 1 + 2,34a; B ?? коэффициент орошения; tвн ?? начальная температура воды, град; tвк ?? конечная температура воды, град; tp ?? температура точки росы воздуха, град.

е) теплосодержание воздуха после оросительной камеры

I7 = I6 + ВМК (tвн ?? tвк) св; (17)

ж) на I ?? d-диаграмму наносят точку 7 при I7 и ?? = 95??97%. Строят процесс повышения теплосодержания воздуха в камере МК (линию 6??7 на рис. 9).

Примечание. Если коэффициент орошения ВМК в камере МК отличается от условного коэффициента орошения во II теплообменнике меньше чем на 10 %, то расчет считается законченным.

Увязка коэффициентов орошения ВМК и ведется изменением величины ??tcII охлаждения воздуха во II теплообменнике.

Если коэффициент орошения в камере ВМК меньше более чем на 10 %, то принятого количества вспомогательного воздуха недостаточно для охлаждения воды. Пересчет теплообменника II ведется с уменьшенной величиной ??tcII т. е. при увеличенной температуре воздуха после теплообменника. Если ВМК больше более чем на 10 %, то следует провести повторный расчет теплообменника, увеличивая ??tcII и принимая более глубокое охлаждение воздуха.

29. Рассчитывают оросительную камеру БК. Расчет сводится к определению коэффициента орошения ВБК, необходимого для требуемого охлаждения воды, отепленной в теплообменниках I и III.

При расчете камеры БК должны быть известны: начальная температура воды tвн, которая равна температуре отепленной воды в теплообменниках I и III (точка 12 на рис. 9), и конечная температура tвк охлажденной воды, которая равна начальной температуре воды, поступающей в теплообменники I и III (точка 11 на рис. 9).

Начальные параметры воздуха перед камерой БК соответствуют конечным параметрам воздуха после оросительной камеры МК (точка 7 на рис. 9).

На I ?? d-диаграмме (точка 7) при I7 и ?? = 95??97 % находят и вычисляют:

а) температуру точки росы tр7 и температуру мокрого термометра tм7 на входе в оросительную камеру БК;

б) разность (tp ?? tвн), принимая tp = tp7 и tвн = t12;

в) разность (tвк ?? tвн), принимая tвк = t11 и tвн = t12;

г) критерий R по диаграмме на рис. 14, предварительно определив разность (tp ?? tвн), принимая tp = tp7 и tвн = t12;

д) коэффициент орошения ВБК по формулам в зависимости от диаметра форсунок

при dф = 3,5 мм;(18)

при dф = 4,5 ?? 5 мм;(19)

е) теплосодержание воздуха I8 после оросительной камеры БК по формуле

I8 = I7 + ВБК(tвн ?? tвк)св;(20)

ж) на I??d-диаграмму наносят точку 8 при ?? = 100% и I8 и строят процесс (линию 7??8 на рис. 9) повышения теплосодержания воздуха в камере БК.

Примечание. Если коэффициент орошения ВБК отличается от суммы условных коэффициентов орошения в I и III теплообменниках меньше, чем на 10 %, то расчет оросительной камеры БК считается законченным.

Последовательность увязки ВБК и ??Вусл та же, что и для оросительной камеры МК (см. примечание к п. 28). Увязку проводят изменением температуры воды t11 перед I теплообменником.

Приложение 3

Примеры расчета

Пример 1 (прямая задача)

В примере определяется состав элементов БСКВ (число секций для I, II и III теплообменников). Приточный кондиционер работает на наружном воздухе, а испарительный ?? на рециркуляционном воздухе из помещения (рис. 16).

Рис. 16.

Исходные данные

Расчетные параметры наружного воздуха для Ташкента tн = 37,7 ??С; Iн = 14,7 ккал/кг (точка 1). Параметры рециркуляционного воздуха (точка 5) tc5 = 27 ??С и I5 = 12,9 ккал/кг. Параметры приточного воздуха tc4 = 20,3 ??С и I4 = 10,5 ккал/кг.

Условные коэффициенты орошения в I, II, III теплообменниках принимаются соответственно 1,2; 1,5; 0,6, см. табл. 1. Схема системы БСКВ приведена на рис. 1.