И.2 Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу паров испарившегося СУГ m СУГ, кг/м2, по формуле1)

, (И.2)

_______

1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.


где М — молярная масса СУГ, кг/моль;

Lисп — мольная теплота испарения СУГ при начальной температуре СУГ Тж, Дж/моль;

Т0 — начальная температура материала, на поверхность которого разливается СУГ, соответствующая расчетной температуре tp, К;

Тж — начальная температура СУГ, К;

lтв — коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт/(м · К);

а — эффективный коэффициент температуропроводности материала, на поверхность которого разливается СУГ, равный 8,4·10-8 м2/с;

t — текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с;

число Рейнольдса (n— скорость воздушного потока, м/с; d характерный размер пролива СУГ, м;

uв — кинематическая вязкость воздуха при расчетной температуре tр, м2/с);

lв — коэффициент теплопроводности воздуха при расчетной температуре tр , Вт/(м · К).

Примеры — Расчет параметров испарения горючих ненагретых жидкостей и сжиженных углеводородных газов

1 Определить массу паров ацетона, поступающих в объем помещения в результате аварийной разгерметизации аппарата.

Данные для расчета

В помещении с площадью пола 50 м2 установлен аппарат с ацетоном максимальным объемом Vaп = 3 м3. Ацетон поступает в аппарат самотеком по трубопроводу диаметром d = 0,05 м с расходом q, равным 2 · 10-3 м3/с. Длина участка напорного трубопровода от емкости до ручной задвижки l1= 2 м. Длина участка отводящего трубопровода диаметром d = 0,05 м от емкости до ручной задвижки L2 равна 1 м. Скорость воздушного потока и в помещении при работающей общеобменной вентиляции равна 0,2 м/с. Температура воздуха в помещении tр=20 °С. Плотность r ацетона при данной температуре равна 792 кг/м3. Давление насыщенных паров ацетона рa при tр равно 24,54 кПа.

Расчет

Объем ацетона, вышедшего из напорного трубопровода, Vн.т составляет

м3,

где t — расчетное время отключения трубопровода, равное 300 с (при ручном отключении).

Объем ацетона, вышедшего из отводящего трубопровода Vот составляет

Объем ацетона, поступившего в помещение

Va = Vап + Vн.т + Vот = 3 + 6,04 ·10-1 + 1,96 · 10-3 = 6,600 м3.

Исходя из того, что 1 л ацетона разливается на 1 м2 площади пола, расчетная площадь испарения Sр = 3600 м2 ацетона превысит площадь пола помещения. Следовательно, за площадь испарения ацетона принимается площадь пола помещения, равная 50 м2.

Интенсивность испарения равна:

Wисп = 10-6 · 3,5 · 24,54 = 0,655 · 10-3 кг/(с · м2).

Масса паров ацетона, образующихся при аварийной разгерметизации аппарата т, кг, будет равна

т = 0,655 · 10-3 · 50 · 3600 = 117,9 кг.

2 Определить массу газообразного этилена, образующегося при испарении пролива сжиженного этилена в условиях аварийной разгерметизации резервуара.

Данные для расчета

Изотермический резервуар сжиженного этилена объемом Vи.р.э= 10000 м3 установлен в бетонном обваловании свободной площадью Sоб = 5184 м2 и высотой отбортовки Ноб= 2,2 м. Степень заполнения резервуара a = 0,95.

Ввод трубопровода подачи сжиженного этилена в резервуар выполнен сверху, а вывод отводящего трубопровода снизу.

Диаметр отводящего трубопровода dтp = 0,25 м. Длина участка трубопровода от резервуара до автоматической задвижки, вероятность отказа которой превышает 10-6 в год и не обеспечено резервирование ее элементов, L= 1 м. Максимальный расход сжиженного этилена в режиме выдачи Gж.э= 3,1944 кг/с. Плотность сжиженного этилена rж.э при температуре эксплуатации Тэк = 169,5 К равна 568 кг/м3. Плотность газообразного этилена rг.э при Тэк равна 2,0204 кг/м3. Молярная масса сжиженного этилена Мж.э= 28 · 10-3 кг/моль. Мольная теплота испарения сжиженного этилена Lиcn при Тэк равна 1,344 · 104 Дж/моль. Температура бетона равна максимально возможной температуре воздуха в соответствующей климатической зоне Tб = 309 К. Коэффициент теплопроводности бетона lб=1,5Вт/(м·К). Коэффициент температуропроводности бетона а = 8,4 · 10-8 м2/с. Минимальная скорость воздушного потока umin = 0 м/с, а максимальная для данной климатической зоны umax = 5 м/с. Кинематическая вязкость воздуха nв при расчетной температуре воздуха для данной климатической зоны tр = 36 °С равна 1,64 · 10-5 м2/с. Коэффициент теплопроводности воздуха lв при tр равен 2,74 · 10-2 Вт/(м · К).

Расчет

При разрушении изотермического резервуара объем сжиженного этилена составит

м3.

Свободный объем обвалования Vоб= 5184 · 2,2 = 11404,8 м3.

Ввиду того, что Vж.э < Vоб примем за площадь испарения Sисп свободную площадь обвалования Sоб, равную 5184 м2.

Тогда массу испарившегося этилена mи.э с площади пролива при скорости воздушного потока u = 5 м/с рассчитывают по формуле (И.2)

Масса mи.э при u = 0 м/с составит 528039 кг.


ПРИЛОЖЕНИЕ К

(рекомендуемое)


МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО РЕЖИМА ПОЖАРА В ПОМЕЩЕНИЯХ ЗДАНИЙ РАЗЛИЧНОГО НАЗНАЧЕНИЯ


К.1 Условные обозначения

V— объем помещения, м3;

S— площадь пола помещения, м2;

Аi площадь i-го проема помещения, м2;

hi высота i-го проема помещения, м;

— суммарная площадь проемов помещения, м2;

— приведенная высота проемов помещения, м;

П— проемность помещения, рассчитывается по формуле (К.1) или (К.2), м0,5;

Рi общее количество пожарной нагрузки i-го компонента твердых горючих и трудногорючих материалов, кг;

q количество пожарной нагрузки, отнесенное к площади пола, кг/м;

qкр.к удельное критическое количество пожарной нагрузки, кг/м2;

qк — количество пожарной нагрузки, отнесенное к площади тепловоспринимающих поверхностей помещения, кг/м2;

Пср — средняя скорость выгорания древесины, кг/(м2 · мин);

Псрi — средняя скорость выгорания i-го компонента твердого горючего или трудногорючего материала, кг/м2 · мин);

— низшая теплота сгорания древесины, МДж/кг;

— низшая теплота сгорания /-го компонента материала пожарной нагрузки, МДж/кг;

eф — степень черноты факела;

Т0 — температура окружающего воздуха, К;

Тw — температура поверхности конструкции, К;

t — текущее время развития пожара, мин;

tн.с.п минимальная продолжительность начальной стадии пожара, мин;

— предельная продолжительность локального пожара при горении ЛВЖ и ГЖ, мин.

К.2 Определение интегральных теплотехнических параметров объемного свободно развивающегося пожара в помещении

К.2.1 Определение вида возможного пожара в помещении

Вычисляется объем помещения V

Рассчитывают проемность помещений П, м0,5, объемом V £ 10 м3

, (K.1)

для помещений с V > 10м3

. (К.2)

Из справочной литературы выбирают количество воздуха, необходимое для сгорания 1 кг материала i-й пожарной нагрузки V0i, нм3/кг.

Рассчитывают количество воздуха, необходимое для сгорания 1 кг материала пожарной нагрузки

. (К.3)

Определяют удельное критическое количество пожарной нагрузки qкр.к кг/м2, для кубического помещения объемом V, равным объему исследуемого помещения

. (К.4)

Вычисляют удельное значение пожарной нагрузки qк, кг/м2, для исследуемого помещения

(К.5)

где S— площадь пола помещения, равная V0,667.

Сравнивают значения qк и qкр.к . Если qк < qкр.к , то в помещении будет пожар, регулируемый нагрузкой (ПРН); если qк ³ qкр.к , то в помещении будет пожар, регулируемый вентиляцией (ПРВ).

К.2.2 Расчет среднеобъемной температуры

Определяют максимальную среднеобъемную температуру Тmах

для ПРН

Tmax - T0 = 224 ; (К.6)

для ПРВ в интервале 0,15 £ tп £ 1,22 ч с точностью до 8 % Тmax = 1000°С и c точностью до 5 %

(К.7)

где tп — характерная продолжительность объемного пожара, ч, рассчитываемая по формуле

, (K8)

где ncр — средняя скорость выгорания древесины, кг/(м2 · мин);

ni — средняя скорость выгорания i -го компонента твердого горючего или трудногорючего материала, кг/(м2 · мин).

Вычисляют время достижения максимального значения среднеобъемной температуры tmax, мин для ПРН

; (К.9)

для ПРВ

tmax = tп,

где tп — рассчитывают по формуле (К.8).

Определяют изменение среднеобъемной температуры при объемном свободно развивающемся пожаре

(К.10)

где Т0 — начальная среднеобъемная температура, °С;

t — текущее время, мин.

К.2.3 Расчет средней температуры поверхности перекрытия

Определяют значение максимальной усредненной температуры поверхности перекрытия , °С

для ПРН

; (К. 11)

для ПРВ с точностью до 8,5 % = 980 °С, с точностью до 5 %

. (К. 12)

Вычисляют время достижения максимального значения усредненной температуры поверхности перекрытия tmах, мин

для ПРН

; (К.13)

для ПРВ с точностью до 10 %

tmax = tп,

Определяют изменение средней температуры поверхности перекрытия

, (К. 14)

где начальная средняя температура поверхности перекрытия.

К.2.4 Расчет средней температуры поверхности стен

Определяют максимальную усредненную температуру поверхности стен

для ПРН

; (К. 15)

для ПРВ при 0,15 £ tп < 0,8 ч с точностью до 10 %

. (К. 16)

При 0,8 < tп £ 1,22ч максимальное усредненное значение температуры поверхности стены с точностью до 3,5 % составляет 850 °С.

Вычисляют время достижения максимального значения усредненной температуры поверхности стен tmах, мин

для ПРН

(К.17)

для ПРВ

tmax = 1,1 tп,

Определяют изменение средней температуры стен

, (К. 18)

где — начальная средняя температура поверхности стен.

К.2.5 Расчет плотности эффективного теплового потока в конструкции стен и перекрытия (покрытия)

Определяют максимальную усредненную плотность эффективного теплового потока в строительные конструкции , кВт/м2:

а) при ПРН:

для конструкции стен

; (К. 19)

для конструкций перекрытия

; (К.20)

б) при ПРВ:

для конструкций стен при 0,8 > tп > 0,15 ч

; (К.21)

при 1,22 ³ tп ³ 0,8 ч

=15 кВт/м2;

для конструкций перекрытий (покрытий) при 0,8 > tп > 0,15 ч

; (К.22)

при 1,22 ³ tп ³ 0,8 ч

=17,3 кВт/м2;

Вычисляют время достижения максимальной усредненной плотности теплового потока в конструкции для ПРН и ПРВ:

для конструкций стен

. (К.23)

для конструкций перекрытия (покрытия)

. (К.24)

Определяют изменение средней плотности теплового потока в соответствующие конструкции

. (К.25)

К.2.6 Расчет максимальных значений плотностей тепловых потоков, уходящих из очага пожара через проемы помещения, расположенные на одном уровне, при ПРВ

Максимальную плотность теплового потока с продуктами горения, уходящими через проемы, рассчитывают по формуле

. (К.26)

К.3 Расчет температурного режима в помещении с учетом начальной стадии пожара при горении твердых горючих и трудногорючих материалов

К.3.1 По данным пожарно-технического обследования или проектной документации определяют:

- объем помещения V;

- площадь проемов помещения Аi;

- высоту проемов hi;

- общее количество пожарной нагрузки каждого вида горючего твердого материала Рi;

- приведенную высоту проемов h;

- высоту помещения h;

- общее количество пожарной нагрузки, приведенное к древесине, Р.

К.3.2 По результатам экспериментальных исследований в соответствии с объемом помещения V и пожарной нагрузкой q определяют минимальную продолжительность начальной стадии пожара (НСП) tНСП. Времени окончания НСП соответствует температура Тв.

К. 3.3 Рассчитывают температурный режим развитой стадии пожара.

К. 3.4 По результатам расчета температурного режима строят зависимость среднеобъемной температуры в помещении в координатах температура — время так, чтобы значению температуры Тв на восходящей ветви соответствовало значение tНСП.

К.3.5 Определяют изменение среднеобъемной температуры в начальной стадии пожара

( Т - Т0 ) / (ТНСП - Т0) = (t / tНСП )2, (К.27)

где ТНСП среднеобъемная температура в момент окончания НСП.

Среднее значение ТНСП горении пожарной нагрузки из твердых органических материалов принимается равным 250 °С.

Пример — Определение температурного режима пожара в помещении промышленного здания с учетом начальной стадии.

Данные для расчета

Площадь пола S = 2340 м2, объем помещения V= 14040 м3, площадь проемов А = 167 м2, высота проемов h = 2,89 м. Общее количество пожарной нагрузки, приведенное к древесине, составляет 4,68 · 104 кг, что соответствует пожарной нагрузке q = 20 кг/м2.