Информация об образце должна включать в себя:

- идентификационный номер;

- порядок слоев, начиная с верхнего, записанного первым;

- тип материала;

- поверхностную плотность;

- тип ткацкого переплетения/вязки;

- цвет;

- число испытуемых образцов.

6.1.9.6. Проведение испытаний

Крепят плавкую проволоку к электродам.

Обеспечивают выполнение всех мер безопасности, убеждаются, что все участники испытаний находятся вне опасной зоны.

Воздействуют электрической дугой на испытуемые образцы.

Отключают электропитание, по завершению сбора данных проветривают помещение испытательного участка и подсоединяют защитное заземление в соответствии с 6.1.5.

Гасят с помощью огнетушителя любое воспламенение, если не было предусмотрено оставлять образец (образцы) до полного сгорания.

Записывают термические и электрические данные и реакцию материала согласно 6.1.11.

Проверяют и восстанавливают, при необходимости, датчики и регулируют их правильное положение и электродуговой промежуток.

6.1.10. Интерпретация результатов

6.1.10.1. Теплопередача

a) Определение начального отсчета времени

Из-за электрических шумов, обычно характерных для этого типа испытаний, бывает трудно получить достоверный момент замыкания при инициировании электродугового разряда.

Однако исходное время действия дуги можно надежно получить для каждого испытания, используя следующий анализ.

Для каждой кривой датчика строят график разности между кривой и линией, проведенной от начала потока данных к некоторой точке в области роста температуры на кривой. Находят максимум на этом разностном графике. Точка на оси времени, которой соответствует этот максимум, является оптимальной оценкой времени инициирования дуги для данного датчика. Эти точки инициирования дуги обычно вполне согласуются в пределах испытания, а среднее значение этих точек для всех датчиков следует использовать как точку инициирования для всех датчиков.

&Примечание. Для определения начала отсчета времени существуют и другие способы, которые можно использовать.&


b) Построение графика для выходных сигналов датчика

После определения момента замыкания данные, собранные для момента замыкания, можно усреднить, чтобы получить базовую линию для кривой каждого датчика. Базовую линию каждой отдельной кривой затем вычитают из каждой линии, построенной по экспериментальным точкам, чтобы получить кривую роста температуры от нулевых точек начала отсчета. Определив момент замыкания и зная время выборки, можно построить кривую роста температуры с соответствующей шкалой времени (см. рисунок 11). Эти процедуры можно легко автоматизировать с помощью компьютерных программ.



Рисунок 11. Типичная кривая роста температуры датчика

в зависимости от времени после введения поправки

на базовую линию


c) Сравнение выходных сигналов датчика с кривой Столл

Кривая Столл определяется значениями, приведенными в таблице 1. Накладывают кривую Столл на график выходных сигналов датчика. Создают файл данных, который позволяет путем интерполяции между точками кривой Столл, приведенными в таблице 1, получать данные кривой Столл для любого временного интервала, в котором регистрируется рост температуры.


Таблица 1


Стойкость кожных тканей человека к возникновению ожоговой

травмы второй степени при повышении температуры


Время
воздействия,
с

Удельный
тепловой
поток, кВт/м2

Падающая
энергия,
кВт x с/м2

Калориметрический
эквивалент железно-
константановой термопары

Дельта T, °C

Дельта mV

1

50

50

8,9

0,46

2

31

61

10,8

0,57

3

23

69

12,2

0,63

4

19

75

13,3

0,69

5

16

80

14,1

0,72

6

14

85

15,1

0,78

7

13

88

15,5

0,80

8

11,5

92

16,2

0,83

9

10,6

95

16,8

0,86

10

9,8

98

17,3

0,89

11

9,2

101

17,8

0,92

12

8,6

103

18,2

0,94

13

8,1

106

18,7

0,97

14

7,7

108

19,1

0,99

15

7,4

111

19,7

1,02

16

7,0

113

19,8

1,03

17

6,7

114

20,2

1,04

18

6,4

116

20,6

1,06

19

6,2

118

20,8

1,08

20

6,0

120

21,2

1,10

25

5,1

128

22,6

1,17

30

4,5

134

23,8

1,23


По данным повышения температуры двух датчиков на каждой панели или четырех датчиков на каждом манекене получают среднюю кривую роста температуры ( ). Сравнивают эту кривую для каждой панели или манекена с кривой Столл.

Для кривых , которые находятся над кривой Столл, записывают максимальную разность в градусах Цельсия между кривой и кривой Столл. Эти значения будут иметь положительный знак, указывающий на то, что кривые лежат выше кривой Столл. Обозначают это как положительное значение для максимальной разности между кривой Столл и кривой .

Для кривых , которые находятся ниже кривой Столл, записывают минимальную разность в градусах Цельсия между кривой и кривой Столл. Эти значения будут иметь отрицательный знак, указывающий на то, что кривые лежат ниже кривой Столл. Обозначают это как отрицательное значение для минимальной разности между кривой Столл и кривой .

d) Выходные сигналы контрольного датчика падающей энергии ( )

Для каждой панели или манекена, находящихся под электродуговым воздействием, вычисляют среднее значение максимального роста температуры для двух соседних контрольных датчиков. Преобразовывают это значение в единицы кВт x с/м2, умножая на постоянную медного калориметра 5,65 кВт x с/м2 x К, чтобы определить падающую энергию для каждой панели или манекена, испытывающих воздействие дуги.

e) Определение ЗЭТВ

Для каждой панели или манекена, находящихся под воздействием электрической дуги, строят график с положительным или отрицательным значением по горизонтальной оси и - по вертикальной оси. Для каждого воздействия дуги три панели дадут три точки данных, манекены дадут от одной до трех точек (в зависимости от числа используемых манекенов) как функции . Чтобы иметь достаточно данных для анализа, должно быть получено не менее 20 экспериментальных точек, представляющих 20 панелей или 20 манекенов, при этом не менее 20% данных должны быть положительными и не менее 20% - отрицательными. Не более 10% экспериментальных точек могут отклоняться от кривой Столл более чем на 5 °C. Все полученные точки, удовлетворяющие этим критериям, должны использоваться в вычислениях ЗЭТВ. Если ЗЭТВ не может быть вычислено из-за разрушения образца, используют другой метод анализа данных, описанный в 6.1.10.2.

f) Вычисление доверительных интервалов

Проводят прямую линию наилучшего соответствия для точек и определяют доверительный 95%-ный интервал для среднего значения и оцениваемых точек. Для вычисления доверительных интервалов оценивают расхождение по формуле


, (1)


где .

Затем расхождение в предварительных расчетах y при некотором частном значении можно вычислить по формулам:


, (2)


. (3)


Доверительный интервал ( ) для предварительного расчета y при некотором частном значении тогда определяется выражениями:


, (4)


, (5)


где t имеет (n - 2) степеней свободы.

Для нахождения области 95%-ных доверительных интервалов для линии наилучшего соответствия по f) можно использовать программное обеспечение.

g) Определение ЗЭТВ

ЗЭТВ является значением , при котором равняется нулю на основе линии наилучшего соответствия по f) и 95%-ный доверительный интервал ЗЭТВ является интервалом , образованным 95%-ной доверительной областью при , равном нулю.

h) Графическое представление ЗЭТВ

Существующие программы статистического анализа для определения 95%-ного доверительного интервала ЗЭТВ требуют, чтобы значения откладывались по вертикальной оси, а - по горизонтальной. Однако такое построение графика в какой-то степени противоречит интуиции. Следовательно, если 95%-ный доверительный интервал определяется согласно f), то график зависимости от можно перестроить, чтобы было на вертикальной оси, а - на горизонтальной.

i) Определение КСТ

Определяют максимальное значение двух датчиков на каждой панели. Вычисляют среднеарифметическое значение для двух датчиков каждой панели и записывают его как . Для каждой панели и при каждом воздействии делят на для двух контрольных датчиков в соответствие с d), расположенных по обе стороны к панели, и идентифицируют это значение как (доля падающей энергии, которая передается через образец). Экспериментальное значение кст для каждой панели вычисляют по формуле


. (6)


Значение КСТ затем определяют путем нанесения всех значений кст для каждой панели на вертикальную ось как функцию для каждой панели на горизонтальной оси. Используют не менее 20 точек, представляющих 20 панелей. Линию наилучшего соответствия проводят через эти точки и для нее определяют 95%-ный доверительный интервал. КСТ является значением, показанным линией наилучшего соответствия при значении , равном ЗЭТВ. 95%-ный доверительный интервал КСТ определяется значениями 95%-ного доверительного интервала при равном ЗЭТВ.

В Приложении B приведены описание и объяснение методов и формул для определения ЗЭТВ и КСТ.

6.1.10.2. Определение пороговой энергии вскрытия

Если необходимые 20% данных над кривой Столл не могут быть получены из-за вскрытия образца, значит ЗЭТВ определить невозможно.

В многослойных образцах, состоящих из огнестойкого материала, все слои должны вскрыться согласно определению, приведенному в 3.3. В многослойных образцах, в состав которых входят горючие слои, считается, что вскрытие происходит, когда воздействию подвергаются эти слои.

При наивысшем значении ниже кривой Столл, при котором образцы не вскрываются, испытания повторяют, чтобы получить еще шесть точек. Если вскрытия снова не происходит, то это значение является пороговой энергией вскрытия .

Если происходит вскрытие хотя бы одного слоя, то повторяют указанные выше действия, чтобы получить 10 точек при самом высоком значении ниже значения, при котором происходит вскрытие. Если вскрытия не происходит, это значение является пороговой энергией вскрытия , но если вскрытие происходит, значение для пороговой энергии вскрытия не может быть получено.

6.1.10.3. Визуальный контроль

Наблюдают за результатом электродугового воздействия на образцы и после того, как образцы остынут, осторожно удаляют ткань и другие слои с панели, отмечая любые дополнительные результаты воздействия. Они могут быть описаны терминами: вскрытие, плавление, капание, обугливание, охрупчивание, усадка, возгорание.

6.1.11. Протокол испытаний

Указывают, что данное испытание было проведено в соответствии с требованиями данного метода и записывают в протокол используемый метод (метод A или B), а также следующую информацию:

- крепление образцов, как указано в 6.1.9.4;

- информацию об образцах, как указано в 6.1.9.5;

- условия проведения каждого испытания, включая:

номер испытания,

среднеквадратичное значение тока дуги,

пиковый ток дуги,

электродуговой промежуток,

длительность дуги,

энергию дуги,

график тока дуги;

- данные об испытаниях, включающие:

номер испытания,

образец (образцы),

порядок слоев пакета материалов,

расстояние от осевой линии дуги до поверхности панели или манекена,

результаты визуального контроля, как описано в 6.1.10.3,

график выходных сигналов двух контрольных датчиков и двух датчиков панели для каждого испытания с использованием панели или четырех датчиков манекенов для каждого испытания с использованием манекена,

график среднего значения выходных сигналов от двух датчиков панели и от двух контрольных датчиков для каждого испытания с использованием панели (метод A) или среднее значение выходных сигналов четырех датчиков на манекенах и двух контрольных датчиков для каждого испытания с использованием манекена (метод B),

ЗЭТВ и 95%-ный доверительный интервал для ЗЭТВ,

график зависимости от ,

КСТ и 95%-ный доверительный интервал для КСТ,

график зависимости КСТ от ,

график распределения падающей энергии незащищенной панели в ходе электродуговых испытаний.

Должны фиксироваться все нарушения, относящиеся к испытательному оборудованию.

Если применяются альтернативные электроды, указывают их размер и тип.

Возвращают прошедшие испытания образцы, графики, данные об испытаниях и неиспользованные образцы заказчику согласно предварительным договоренностям. Все образцы должны быть маркированы с указанием номера испытания, даты и др.