Классификация внешних воздействий приведена в МЭК 60364-3.

L.2 Пластмассы, применяемые в светильниках

В конструкциях светильников детали из пластмасс являются важными и распространенными элементами. Это относится как к внутренним деталям и проводке, так и к светопропускающим элементам, экранам или крепежу.

Применяемый термин «нормальная» эксплуатация светильников означает естественную продолжительность срока старения применяемых пластмассовых деталей.

Очень тяжелые условия эксплуатации и разрушающие воздействия среды снижают устойчивость к старению.

Таблица L.1

Влияние разрушающих воздействий

Разрушающее воздействие

Причина

Эффект*

Высокая рабочая температура

Очень высокое рабочее напряжение

Деформация

Очень высокая окружающая температура

Хрупкость

Неправильная установка

Обесцвечивание

УФ излучение

Применение ртутных ламп высокого давления с избыточным УФ излучением

Желтизна

Бактерицидные лампы

Хрупкость

Агрессивная среда

Мягкость (пластичность)

Растрескивание

Неправильная чистка (с применением дезинфицирующих средств)

Снижение прочности

Разрушение внешней поверхности

* Все причины разрушающих воздействий относятся ко всем эффектам.

Особое внимание следует обратить на:

- продолжительность воздействия температуры;

- воздействие УФ и видимого излучений;

- статическое и динамическое механические воздействия;

- кислотная среда.

Некоторые сочетания этих воздействий приводят к критическим ситуациям, делая материал непригодным для применения. Например, сочетание УФ излучения и нагрева может превратить ПВХ изоляцию кабеля в зеленую субстанцию, свидетельствующую о разрушении изоляции. Изложенные свойства присущи всем материалам в той или иной степени, но могут различаться в зависимости от используемого наполнителя или отвердителя, процесса изготовления и параметров конструкции.

L.3 Защита от ржавчины

Предназначенные для использования в помещениях с нормальными условиями светильники могут быть изготовлены из различных материалов.

Металлические штампованные детали светильника должны быть предварительно соответствующим образом обработаны, а поверхность должна иметь покрытие, например способом горячего эмалирования.

Неокрашенные алюминиевые отражатели и решетки должны изготавливаться из алюминиевых сплавов с анодным покрытием.

Такие вспомогательные детали светильников, как прижимы, петли и т.п. будут иметь достаточный срок эксплуатации в помещениях с нормальными условиями, если они имеют соответствующее гальваническое покрытие. Подходящим покрытием являются цинк, никель/хром или олово.

Примечание - Проверку электрической безопасности светильников, предназначенных для помещений с повышенной влажностью, проводят испытаниями по разделу 9.

L.4 Защита от коррозии

Светильники внутреннего и наружного освещения, предназначенные для использования в атмосфере с высокой влажностью, должны иметь соответствующую защиту от коррозии. Несмотря на применяемую защиту такие светильники не предназначены для длительной эксплуатации в средах, содержащих химические пары, например, двуокись серы, в концентрациях, способных при определенной влажности вызвать заметную коррозию.

При оценке защиты светильника от коррозии необходимо помнить, что внутренние детали защищенных светильников (даже если есть одно или более сливных отверстий) значительно меньше подвержены коррозии, чем наружные детали.

Следующие металлы или сплавы обладают необходимой коррозионной стойкостью:

a) медь, бронза или латунь, содержащая не менее 80 % меди;

b) нержавеющая сталь;

c) алюминий (листовой, экструдированный или литой под давлением), цинк, обладающие стойкостью к атмосферной коррозии;

d) литой или кованый чугун толщиной не менее 3,2 мм, покрытый с наружной стороны слоем цинка толщиной 0,05 мм;

e) стальной лист с цинковым покрытием толщиной 0,02 мм;

f) пластмассы (см. L.1).

Во избежание электролитической коррозии контактирующие друг с другом металлические детали должны быть изготовлены из металлов, близких друг к другу в гальваническом ряду. Например, латунь и другие медные сплавы не должны контактировать с алюминием или алюминиевыми сплавами; в гораздо большей степени приемлем контакт материалов этих групп с нержавеющей сталью.

Для светильников, работающих вне помещений, обычно выбирают пластмассы из группы акрилов, характеристики которых незначительно изменяются при длительной эксплуатации.

Как правило, целлюлозные материалы не отвечают условиям эксплуатации при высокой влажности как внутри, так и вне помещений, а, например, детали из полистирола пригодны для использования в помещении, но вне помещений подвержены сильному разрушению из-за воздействия влаги в сочетании с солнечной радиацией.

Если светильники с пластмассовыми деталями, предназначенные для использования при высокой влажности (внутри или вне помещений), имеют клеевые соединения, важно, чтобы используемый клей также выдерживал без разрушения длительное воздействие влаги.

Примечание - Проверку электрической безопасности светильников, предназначенных для эксплуатации вне помещений при повышенной влажности, проводят испытаниями по разделу 9.

L.5 Химически агрессивная атмосфера

Использование светильников в атмосфере со значительной концентрацией химически агрессивных газов или паров, особенно если имеет место конденсация, требует соблюдения не только указанных выше мер, но и следующих дополнительных условий.

a) Как правило, светильники, корпуса которых изготовлены литьем из коррозионностойкого металла, могут эксплуатироваться дольше, чем светильники с корпусом из металлического листа.

b) Если используются металлы, то, насколько это возможно, выбор их должен проводиться с учетом стойкости к конкретным агрессивным веществам, т.к. большинство металлов подвержены воздействию многих агрессивных веществ. Алюминиевое литье под давлением может удовлетворять большинству случаев применения.

c) Красители или другие способы защиты должны выбираться с учетом конкретных условий агрессивности среды. Например, стойкие к кислоте краски могут быть стойкими также и к воздействию некоторых щелочей.

d) Такие пластмассы, как акрилы, поливинилхлориды и полистиролы обладают высокой стойкостью к воздействию большинства неорганических кислот и щелочей. Однако они подвержены воздействию ряда органических жидкостей и паров, и поэтому, в зависимости от цели и содержания среды материалы должны выбираться с учетом конкретных условий.

e) Покрытие стеклосодержащей эмалью стойкой ко многим химическим веществам, однако при этом необходимо, чтобы покрытие не содержало зон разрыва или трещин, если требуется обеспечить длительный срок эксплуатации в очень агрессивной атмосфере.

ПРИЛОЖЕНИЕ М

(справочное)

Руководство по переводу таблицы IX МЭК 60598-1 (второе издание) в таблицу 11.1 - определение путей утечки и воздушных зазоров

Пути утечки и воздушные зазоры

Классы защиты светильников

0 и I

II

III

Максимальное рабочее напряжение, В, не более

24, 250, 500, 1000

24, 250, 500

50

(1) Между токоведущими деталями разных фаз

Основная изоляция

Пути утечки или воздушные зазоры

PTI ≥ 600 или PTI < 600

(2) Между токоведущими деталями, доступными для прикосновения металлическими деталями, а также между токоведущими деталями и наружными поверхностями изолирующих деталей

Основная изоляция

Усиленная изоляция

Основная изоляция

Пути утечки или воздушные зазоры

PTI ≥ 600 или PTI < 600

(3) Детали, которые могут стать токоведущими при нарушении рабочей* изоляции в светильниках класса защиты II и доступными для прикосновения металлическими деталями

-

Дополнительная изоляция. Пути утечки или воздушные зазоры

PTI ≥ 600 или PTI < 600

-

(4) Между наружной поверхностью гибкого кабеля или шнура и доступными для прикосновения металлическими деталями, которые защищены зажимом шнура, держателем кабеля или зажимом из изоляционного материала

(5) Между токоведущими деталями выключателя, смонтированного в светильнике, и соседними металлическими деталями после снятия изоляционной прокладки около выключателя

Основная изоляция

Дополнительная изоляция

-

(6) Между токоведущими деталями и другими металлическими деталями между ними и поверхностью крепления (стена, потолок, стол и т.п.) или между токоведущими деталями и поверхностью крепления, когда между ними нет промежуточного металла

Дополнительная изоляция

Усиленная изоляция

Основная изоляция

* В данном случае рабочая изоляция понимается как основная изоляция.

ПРИЛОЖЕНИЕ N

(справочное)

Руководство для светильников с маркировкой

Если светильник имеет символ , то это означает возможность прямого монтажа светильника на монтажной поверхности из нормально воспламеняемых материалов. К нормально воспламеняемым материалам относят такие строительные материалы, как дерево и материалы на его основе толщиной более 2 мм.

Ранее требования об установке на ту или иную монтажную поверхность относились к светильникам, содержащим ПРА или трансформатор.

Позднее было принято решение распространить использование символа на все светильники, имеющие срок службы более 10 лет, включая светильники с лампами накаливания.

Первоначально требования маркировки символа базировались на двух четких характеристиках:

a) защита от воспламенения, которое может произойти в конце срока службы ПРА, см. пункт 4.16.1 МЭК 60598-1 (1986);

b) защита от перегрева ПРА в процессе аномального режима (короткозамкнутый стартер), а также случайного разрушения, см. пункт 4.16.2 МЭК 60598-1 (1986).

N.1 Защита от воспламенения

Практический 10-летний опыт показал, что предполагаемая возможность воспламенения обмотки ПРА в конце его срока службы не очевидна.

Такие компоненты светильников, как конденсаторы, подвергают разрушающему испытанию для подтверждения их безопасности.

Кроме того, надо иметь в виду, что для материалов светильника, обладающих свойством самозатухания и испытываемых в соответствии с 4.15, делается вывод, что для них не является обязательным выполнение требования к материалам, находящимся между обмотками и монтажной поверхностью. Это требование поэтому было исключено из второго издания МЭК 60598-1.

N.2 Защита от перегрева

Гарантируя защиту монтажной поверхности от чрезмерного нагрева, изготовитель выбирает один из трех равноценных способов защиты:

- зазор;

- измерение температуры;

- тепловая защита.

N.2.1 Зазор

ПРА или трансформатор должны быть удалены от монтажной поверхности на минимальное расстояние:

a) 10 мм, включая воздушный зазор не менее 3 мм между наружной поверхностью корпуса светильника и монтажной поверхностью, и воздушный зазор не менее 3 мм, между ПРА или трансформатором и внутренней поверхностью корпуса светильника.

Если ПРА или трансформатор не имеют корпуса, то расстояние 10 мм должно соблюдаться от их токоведущих частей, например обмотки ПРА.

Рекомендуется, чтобы корпус светильника постоянно создавал защитную зону ПРА или трансформатора с допустимым расстоянием не менее 35 мм между токоведущей частью ПРА или трансформатора и монтажной поверхностью, в противном случае необходимо применять требования подпункта b). Там, где нет требований к материалу корпуса светильника, он может быть из изоляционного материала, соответствующего 4.15.

Если светильник без корпуса, то зазор между ПРА или трансформатором и монтажной поверхностью должен быть не менее 35 мм;

b) 35 мм. Принимается главным образом в светильниках, установленных на скобах, в которых расстояние между ПРА или трансформатором и монтажной поверхностью часто больше чем 10 мм.

N.2.2 Измерения температуры монтажной поверхности в аномальном режиме или условиях отказа ПРА.

Измерения температуры могут проводиться для подтверждения, что монтажная поверхность не может достигать слишком высокой температуры в результате аномальных режимов ПРА или при отказе ПРА.

Эти требования и испытания основаны на предположении, что в случае повреждения ПРА или трансформатора, например при коротком замыкании обмотки, температура обмотки ПРА или трансформатора не превышает 350 °С в течение не более 15 мин, и при этом соответствующая температура любой части монтажной поверхности должна быть не более 180 °С в течение не более 15 мин.

Также в процессе аномального режима работы ПРА температура любой части монтажной поверхности не должна превышать 130 °С. Значения температур обмотки и монтажной поверхности, измеренных при напряжении 1,1 от нормируемого, наносят на график и через полученные точки проводят прямую линию. При продолжении линия не должна пройти через точку, соответствующую температуре 180 °С для монтажной поверхности, до того, как температура обмотки ПРА достигнет 350 °С (см. рисунок 9).