- тип распыляющей системы;

- общая индуктивность разрядной цепи;

- зарядное напряжение, материал электрода и длина межэлектродного промежутка используемой разрядной цепи.

6.3.3 Оформление результатов испытаний

В протоколе испытаний должны быть указаны:

- значение самой высокой энергии искрового разряда W1, при которой не происходит воспламенение пылевоздушной смеси;

- значение самой низкой энергии искрового разряда W2, при которой пылевоздушная смесь воспламеняется.

6.3.4 Оформление протокола испытаний

Пример оформления протокола испытания приведен на рисунке А.1.



ПРИЛОЖЕНИЕ А

(рекомендуемое)


Примеры искрообразующих систем


А.1 Общие положения

Для определения минимальной энергии зажигания пылевоздушной смеси допускается использовать конструкции искрообразующих систем, описанные в А.2-А.5. С любой из этих конструкций возможно использование различных камер для воспламенения при условии, что распыление образца пыли оптимизировано и приняты необходимые меры безопасности с целью предотвращения побочных эффектов, возникающих в сравнительно больших сосудах от явлений электростатической разрядки в момент распыления. Данные явления вызывают дополнительную зарядку/разрядку конденсатора.

В случае отсоединения аккумулирующего конденсатора от электрода во время заряда, при расчете энергии искрового разряда, должно быть принято во внимание уменьшение напряжения, возникающее из-за увеличения электрической емкости при подключении конденсатора к электроду. При всех расчетах энергии необходимо учитывать полную электрическую емкость разрядной цепи и напряжение в момент разрядки.

А.2 Зажигание при помощи вспомогательной искры с использованием трех электродов

Схема установки для испытаний приведена на рисунке А.2.

Отличительным элементом этой установки для испытаний является межэлектродный промежуток, образованный тремя электродами. Два электрода, формирующие основной межэлектродный промежуток l, расположены соосно, имеют диаметр 3,2 мм, и их концы заострены до диаметра 2 мм на длине 20 мм. Свободный конец вспомогательного электрода 1 наклонен к основному межэлектродному промежутку и имеет длину 20 мм. Описанное устройство устанавливают в трубку Хартмана 2 с открытым верхом, но оно может быть установлено и в других камерах для воспламенения.

После загрузки в устройство для получения пылевоздушной смеси требуемого количества пыли трубку устанавливают в исходное положение. Конденсатор С (от 20 до 10000 пФ), аккумулирующий энергию, заряжают с помощью высоковольтного зарядного устройства ВВЗУ через зарядное сопротивление R, которое ограничивает зарядный ток до 1 мА. Зажигание пылевоздушной смеси инициируют контрольным устройством (КУ). При каждом испытании запускают устройство, которое распыляет образец пыли, затем инициируют вспомогательную искру и запуск основного искрового разряда от аккумулирующего конденсатора.

Энергия вспомогательной цепи должна быть не более 1/10 энергии основной разрядной цепи.

А.3 Зажигание изменением межэлектродного промежутка

Схема установки для испытаний приведена на рисунке А.3.

В два отверстия для крепления электродов в трубке Хартмана с открытой верхней частью 1 вставляют пробки 2 из ПТФЭ (политетрафторэтилена). Пробки предназначены для того, чтобы укрепленные в них электроды 3 могли перемещаться. Заземленный электрод прикреплен к измерительному стержню микрометрического винта 4, зажим которого укорочен и прикреплен к модифицированной трубке Хартмана. На другой электрод, прикрепленный через изоляционную трубку из ПТФЭ 5 к толкателю управляемого пневматического поршня двойного действия 6, имеющего длину рабочего хода 10 мм (номинальный диаметр поршня - 35 мм; рабочее давление - 600 кПа), подают высокое напряжение. Электрод высокого напряжения подсоединен к конденсатору 7 емкостью от 26 пФ до 311 мкФ. Электростатический вольтметр 8 фиксирует напряжение, до которого заряжается конденсатор. После отсоединения генератора высокого напряжения 9 от цепи конденсатора открывается электропневматический клапан и сжатый воздух из камеры высокого давления 10 распыляет образец пыли, образуя пылевоздушную смесь. После задержки, установленной таймерным устройством 11, электрод высокого напряжения выдвигается в рабочее положение, и накопленная в конденсаторе энергия выделяется в межэлектродном промежутке.

А.4 Зажигание увеличением напряжения (зарядная цепь)

Схема установки для испытаний приведена на рисунке А.4.

Метод увеличения напряжения на конденсаторе цепи является одним из самых простых методов создания искрового разряда известной энергии для определения минимальной энергии зажигания пылевоздушных смесей.

Высоковольтный источник постоянного тока медленно повышает напряжение на конденсаторе до тех пор, пока не возникнет искровой разряд. Затем цикл повторяют, давая серию искровых разрядов одинаковой энергии. В цепь включен токоограничивающий резистор сопротивлением от 108 до 109 Ом. Потенциал на конденсаторе измеряют электростатическим вольтметром, подсоединенным к обкладкам конденсатора через развязывающий резистор, имеющий сопротивление от 108 до 109 Ом. Изменяя емкость конденсатора и, если необходимо, напряжение разряда в данной цепи, можно легко получить искровые разряды от 1 мДж и выше.

Параметры схемы для формирования искровых разрядов требуемой энергии определяют до помещения образца пыли в камеру для воспламенения. Подбирают емкость конденсатора и напряжение от 10 до 30 кВ. Затем устанавливают подбором напряжение и расстояние между электродами до появления в межэлектродном промежутке искровых разрядов требуемой энергии, определяемой по формуле (1) и равной 0,5CU2. В данном выражении U - напряжение заряженного конденсатора, при котором возникает искровой разряд, С - полная электрическая емкость разрядной цепи электрода высокого напряжения, которая может быть измерена при помощи обычных мостовых методов постоянного тока. При проведении испытаний на воспламенение электрод высокого напряжения помещают в камеру для зажигания после того, как туда уже помещен образец пыли, подлежащий испытанию. Высоковольтный источник постоянного тока включают в цепь и, когда между электродами начнут проходить искровые разряды, распыляют образец пыли воздушной струей. При этом фиксируют, появляется ли воспламенение и распространяется ли пламя от искрового разряда.

Первые испытания обычно выполняют с искровым разрядом высокой энергии 500 Дж. После появления воспламенения искровую энергию ступенчато понижают, и испытания повторяют, как описано в 6.1, до тех пор, пока искровые разряды не перестанут воспламенять пылевоздушную смесь.

А.5 Зажигание вспомогательной искрой с использованием нормальной системы двух электродов (триггерный трансформатор в разрядной цепи)

Схема установки для испытаний приведена на рисунке А.5.

Данная цепь не может быть использована для испытания без индуктивности. С - разрядный конденсатор, имеющий исходное напряжение U. Емкость конденсатора, которая может изменяться от 40 пФ и ниже ступенчато с коэффициентом 10, и напряжение, которое может изменяться от 1000 до 400 или 500 В (практический минимальный уровень), позволяют получить широкий диапазон энергий, величины которых рассчитывают по формуле (1). Инициирование искрового разряда в заданный момент требуется для синхронизации искрового разряда с формированием нестабильного облака пыли и выполняется с помощью спусковой схемы (триггера), в которой основными элементами являются конденсатор СTr, выключатель S и первичная катушка триггерного трансформатора. После замыкания выключателя во вторичной катушке трансформатора возникает импульс высокого напряжения с минимальным значением, приблизительно равным 15 кВ, вызывая пробой межэлектродного промежутка G и разряд основного конденсатора. Опыт показывает, что с помощью триггерной схемы очень трудно уменьшить мощность, подводимую к межэлектродному промежутку, до значения 2-5 мДж. По этой причине описанный триггерный метод применим только к искровым энергиям св. 5 мДж.

Энергии искровых разрядов, возникающих при различных комбинациях С и U, определяют измерением тока в межэлектродном промежутке и приложенного к нему напряжения как функций времени и интегрированием кривой мощности по времени. Функция диода D состоит в получении только однополярных разрядов. Коэффициент самоиндукции вторичной катушки триггерного трансформатора должен быть от 1 до 2 мГн.


Минимальная энергия зажигания пылевоздушной смеси, измеренная согласно ГОСТ Р МЭК 61241-2-3-99

Характеристики образца пыли

Обозначение образца: _____________________________________________________________


Происхождение или источник отбора образца: ________________________________________


Подготовка образца: ______________________________________________________________


Информация о размере частиц (например, медиана, радиус, максимальное значение): _______

_____________________________________________________________________________


Содержание влаги: ________________________________________________________________


Установка для испытания


Искрообразующая система: _________________________________________________________


Камера для воспламенения: _________________________________________________________


Система распыления пыли: _________________________________________________________


Общая индуктивность цепи: ________________________________________________________


Межэлектродный промежуток: ______________________________________________________


Зарядное напряжение: _____________________________________________________________


Результат испытаний

___________ < Wmin < __________


Дата ____________________________ Подпись ________________



Рисунок А.1 - Образец формы протокола испытания




ВЦ - вспомогательная цепь; С - испытательный конденсатор; КУ - контрольное устройство; ВВЗУ – зарядное устройство; М - манометр; L - индуктивность; МК - магнитный клапан; R - зарядное сопротивление; К – запорный клапан; l - основной межэлектродный промежуток; 1 - вспомогательный электрод; 2 - трубка Хартмана; 3 - резервуар сжатого воздуха


Рисунок А.2 - Схема установки для испытаний. Зажигание при помощи вспомогательной искры с использованием трех электродов



1 - камера для воспламенения, трубка Хартмана с открытой верхней частью; 2 - пробки из ПТФЭ; 3 - электроды; 4 - микрометрический винт; 5 - изоляционный отрезок трубы из ПТФЭ; 6 – пневматический поршень двойного действия; 7 - конденсатор; 8 - электростатический вольтметр; 9 - генератор высокого напряжения (5-10 кВ); 10 - камера высокого давления; 11 – таймер


Рисунок А.3 - Схема установки для испытаний. Зажигание изменением межэлектродного промежутка



U - источник напряжения постоянного тока; С - конденсатор; R1 - резистор (развязывающее сопротивление); R2 - токоограничивающий резистор; V - электростатический вольтметр; L - индуктивность 1 мГн


Рисунок А.4 - Схема установки для проведения испытаний. Зажигание увеличением напряжения (зарядная цепь)



С - основной конденсатор; СTr - конденсатор в цепи триггера; D - диод; S - выключатель; Т - трансформатор; G - межэлектродный промежуток; V - импульсный вольтметр


Рисунок А.5 - Схема установки для испытаний. Зажигание вспомогательной искрой, с использованием нормальной системы двух электродов (триггерный трансформатор в разрядной цепи)



ПРИЛОЖЕНИЕ В

(рекомендуемое)


Значение минимальной энергии зажигания


Требования настоящего стандарта не распространяются на определение границ опасности и установление мер безопасности при определении минимальных энергий зажигания. Тем не менее уместно привести некоторые материалы по использованию значений измеренных величин для оценки безопасности промышленных установок.

Необходимо рассматривать несколько типов разрядов:

- тлеющий коронный разряд - от заостренного электрода или электрода маленького радиуса;

- кистевой разряд - от порошкообразного взрывчатого вещества или изоляционных твердых веществ;

- конусный (диффузорный) разряд - от высокоизоляционных гранул;

- распространяющийся кистевой разряд - от поляризованных изоляционных поверхностей;

- искровой разряд.

Их воспламеняющие способности указаны в таблице B.1 по отношению к минимальной энергии зажигания, измеренной в соответствии с настоящим стандартом.


Таблица B.1


Воспламеняющие способности различных типов электростатического разряда


Тип разряда

Воспламеняющая способность

Минимальная энергия зажигания

Коронный

Воспламенение облаков пыли и других невзрывчатых веществ

До 0,1 мДж

Кистевой

Возможно воспламенение смеси и очень чувствительной пыли некоторых типов

До 3 мДж

Конусный

Возможно воспламенение горючей пыли большинства типов

Возрастает с увеличением объема материала

Распространяющийся

Возможно воспламенение горючей пыли большинства типов

Несколько джоулей

Искровой разряд

Возможно воспламенение любой горючей пыли

Не ограничена