Рисунок А.1 - Зависимость оптимального значения высоты буртиков от коэффициента Пуассона

Приблизительно t0 можно рассчитать по формуле

. (А.3)

ПРИЛОЖЕНИЕ Б
(справочное)

ВИДЫ КРИВЫХ УПРОЧНЕНИЯ

Имеется восемь видов кривых упрочнения, построенных по результатам испытания на сжатие (рисунок Б.1). Ход кривых упрочнения ss() обусловлен главным образом природой металлов и сплавов (рисунок Б.1а, б, в, г, д), видом и режимом предварительной термической и пластической обработки (рисунок Б.1е, ж, к).

Наиболее распространенным видом является кривая упрочнения, изображенная на рисунке Б.1а. Этим видом кривых упрочнения обладают термически обработанные и горячекатаные углеродистые и легированные конструкционные и инструментальные стали, многие высоколегированные стали, железо, алюминий и его сплавы, медь и титан и большинство их сплавов, легкие металлы и ряд труднодеформируемых металлов и их сплавов. В этих кривых упрочнения напряжение течения сравнительно сильно возрастает на начальных стадиях деформации, в дальнейшем интенсивность упрочнения плавно уменьшается, а затем с ростом деформации почти не изменяется. Для пластичных металлов и сплавов интенсивность увеличения ss с ростом меньше, чем для прочных металлов и сплавов.

Второй вид кривых упрочнения (рисунок Б.1б) характеризуется большой интенсивностью упрочнения, которая может несколько уменьшаться при больших степенях деформации. Такой тип кривой упрочнения характерен для аустенитных сталей, некоторых медных и титановых сплавов.

Третий вид упрочнения (рисунок Б.1в) описывает зависимость ss() циркония и сплава на его основе цирколай-2. Для таких кривых упрочнения интенсивность упрочнения при небольших степенях деформации весьма незначительна, а затем резко возрастает; несущественное уменьшение интенсивности упрочнения проявляется при степенях деформации, близких к разрушению.

Четвертый вид кривых упрочнения (рисунок Б.1г) отличается тем, что после достижения максимального значения ss его значение с дальнейшим увеличением или уменьшается, или остается неизменным. Такой тип кривых упрочнения установлен для цинка и его сплавов с алюминием в отожженном состоянии (кривая 2), закаленном и состаренном состоянии (кривая 1), а также для некоторых алюминиевых сплавов при высоких степенях деформации.

Кривые упрочнения, представленные на рисунке Б.1д, характерны для сверхпластичных материалов. Ход кривой ss() для таких материалов сложный, с проявлением максимумов и минимумов (пятый вид кривых упрочнения).

Представленные на рисунке Б.1е кривые упрочнения (шестой вид) характерны для различных пластичных сплавов, получивших предварительную обработку давлением в холодном состоянии при сравнительно небольших деформациях (примерно 0,1-0,15), причем направления нагрузок при предварительном и последующем деформировании противоположны (например волочение + осадка). При этом интенсивность изменения ss меньше для сплавов, получивших большую степень предварительной деформации (кривая 3 по сравнению с кривой 1). У таких кривых упрочнения интенсивность возрастания ss ростом во всем диапазоне степеней деформации меньше, чем у кривых упрочнения первых трех видов (рисунки Б.1а, б, в).

Кривые упрочнения, изображенные на рисунке Б.1ж, относятся к предварительно деформированным в холодном состоянии сплавам с противоположным направлением нагрузок при предварительном и последующем деформировании, пластичным сталям с большими степенями предварительной деформации (более 0,1-0,15), сталям средней и высокой прочности, латуням и бронзам с высокими степенями предварительной деформации.

Восьмой вид (рисунок Б.1и) кривых упрочнения соответствует сталям и некоторым сплавам на его основе, получившим предварительную обработку в виде холодной пластической деформации, при этом направление приложения нагрузки при обеих деформациях совпадает. Более пологий наклон кривых упрочнения (кривые 3 и 4) соответствует более высоким степеням предварительной деформации. Для таких сталей характерна невысокая интенсивность роста ss с увеличением .

Кривые упрочнения первого вида хорошо аппроксимируются зависимостью

. (Б.1)

С некоторым приближением зависимость (Б.1) описывает кривые упрочнения второго и третьего вида. Рекомендуется использовать эту зависимость для аппроксимации кривой упрочнения четвертого вида в диапазоне степеней деформации до возникновения максимума на ней.

Кривые упрочнения шестого, седьмого и восьмого типов с достаточной для практики точностью могут быть линеаризированы и тогда с некоторым приближением их можно аппроксимировать уравнением

, (Б.2)

где - экстраполированный предел текучести предварительно деформированных сталей (отрезок, отсекаемый линеаризированной прямой на оси ординат);

b¢ - коэффициент, характеризующий наклон линеаризованных кривых упрочнения.

Рисунок Б.1 - Типы кривых упрочнения

ПРИЛОЖЕНИЕ В
(рекомендуемое)

КОНСТРУКЦИИ ПРИСПОСОБЛЕНИЙ ДЛЯ ИСПЫТАНИЙ ОБРАЗЦОВ НА СЖАТИЕ

На рисунке B.1 приведен сборочный чертеж приспособления для проведения испытаний на сжатие, позволяющего исключить перекосы между образцом и деформирующей плитой и уменьшить погрешность нагружения образца.

Допускается использование приспособлений иных конструкций.

1 - пуансон; 2 - направляющая втулка; 3 - основание; 4 - опорная верхняя плита;

5 - образец; 6 - самоустанавливающая опора со сменным вкладышем

Рисунок B.1 - Приспособление для испытания на сжатие

ПРИЛОЖЕНИЕ Г
(рекомендуемое)

ПРОТОКОЛ
испытания образцов I-III типов для оценки механических характеристик

Назначение испытаний _______________________________________________________

Испытательная машина. Тип __________________________________________________

Образец. Тип ______________________________________. Твердость по шкалам Бринелля или Роквелла ______________________________________________________

Номер образца

h0

d0

A0

Нагрузка, Н (кгс)

Характеристика, МПа (кгс/мм2)

Fпц

F0,05

Fт

F0,2

Fmax

Ес

К протоколу прилагается диаграмма испытаний.

Испытания проводил Личная подпись Расшифровка подписи

Зав. Лабораторией Личная подпись Расшифровка подписи


ПРОТОКОЛ
испытания цилиндрических образцов III и IV типов для построения кривой упрочнения

Назначение испытаний _______________________________________________________

Испытательная машина. Тип _____________________. Образец. Тип ________________

Номер образца

Твердость по шкалам Бринелля или Роквелла

h0, мм

hк, мм

d0, мм

dк, мм

А0, мм2

Ак, мм2

F, Н(кгс)

ss, МПа (кгс/мм2)












Испытания проводил Личная подпись Расшифровка подписи

Зав. Лабораторией Личная подпись Расшифровка подписи

ПРИЛОЖЕНИЕ Д
(рекомендуемое)

СВОДНЫЙ ПРОТОКОЛ
испытания образцов I-IV типов для оценки механических характеристик и параметров аппроксимирующих уравнений кривых упрочнения

Название испытаний _______________________________________________________

___________________________________________________________________________

Характеристика испытуемого материала:

Марка и состояние. __________________________________________________________

Направление волокна ________________________________________________________

Тип заготовки ______________________________________________________________

Тип и размеры образца _______________________________________________________

Состояние поверхности образца _______________________________________________

Твердость по шкалам Бринелля или Роквелла ___________________________________

___________________________________________________________________________

Тип и основные характеристики испытательной машины и измерительной техники:

испытательной машины ______________________________________________________

тензометра _________________________________________________________________

преобразователя перемещений ________________________________________________

измерительных приборов и инструмента ________________________________________

преобразователя силы ________________________________________________________

самопишущего прибора ______________________________________________________

Условия испытаний:

Материалы и твердость деформирующих плит (НВ или HRСэ) _____________________

Скорость относительной деформации, с-1 _______________________________________

Скорость нагружения, МПа/с (кгс/мм2×с) ________________________________________

Скорость перемещения деформирующей плиты, мм/с _____________________________

Результаты испытаний

Номер образца

, МПа (кгс/мм2)

, МПа (кгс/мм2)

, МПа (кгс/мм2)

, МПа (кгс/мм2)

, МПа (кгс/мм2)

Ес, МПа (кгс/мм2)

ss, МПа (кгс/мм2)

ss1, МПа (кгс/мм2)

, МПа (кгс/мм2)












Испытания проводил Личная подпись Расшифровка подписи

Зав. Лабораторией Личная подпись Расшифровка подписи

ПРИЛОЖЕНИЕ Е
(рекомендуемое)

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ДЛЯ ПОСТРОЕНИЯ КРИВОЙ УПРОЧНЕНИЯ. ОЦЕНКА ПАРАМЕТРОВ АППРОКСИМИРУЮЩИХ УРАВНЕНИЙ

1 При испытании партии образцов

Для каждого конкретного значения испытывают по одному образцу. Кривые упрочнения, описываемые уравнениями (рисунки Б.1а, б, в) или (рисунки Б.1e, ж, к), строятся по результатам обработки методом наименьших квадратов всех экспериментальных точек во всем диапазоне изучаемых степеней деформации. Обработку следует проводить на ЭВМ. При этом для кривых упрочнения определяют параметры аппроксимирующих уравнений, n, , b¢.

Рисунок E.1 - типовые зависимости показателя деформационного упрочнения n от степени деформации

В случае обработки опытных данных аналитическим путем рекомендуется использовать справочную литературу.

2 При ограниченном количестве испытаний

При ограниченном количестве опытов (пяти образцов) кривые упрочнения строят на основе обработки диаграмм машинных записей по осадке всех испытуемых образцов до конечной степени деформации. ss рассчитывают для значений равным 0,01; 0,03; 0,05; 0,08; 0,1, и далее через каждые 0,05 до конечного значения степени деформации . Для каждого значения ss определяют, как среднюю по данным (пяти точек). Построение кривых упрочнения и дальнейшую обработку опытных данных проводят, как при испытании партии образцов.

3 Определение показателя деформационного упрочнения n при малых степенях деформации и в узком их диапазоне

Для большинства металлов и сплавов зависимость n() не является линейной функцией (рисунок E.1): с ростом обычно уменьшается n, достигая при больших значениях практически постоянной величины (рисунок E.1а), или вначале увеличивается, достигнув максимума, а затем уменьшается (рисунок E.1б). И только в отдельных случаях n , носит линейный характер (рисунок E.1a).

Первый вид зависимости (рисунок E.1б) характерен для меди, углеродистых конструкционных и инструментальных сталей, ряда конструкционных легированных сталей.

Представленный на рисунке Е.1б вид зависимости n , присущ для материалов, испытывающих структурно-фазовые превращения при деформации - аустенитные стали, некоторые латуни. Практически не меняется величина n с ростом (рисунок E.1в) для железа, хромистых конструкционных сталей. Для алюминиевых сплавов в зависимости от их химического состава наблюдаются все три вида зависимости n .

В связи с изменением n с ростом для большинства металлов и сплавов возникает необходимость в определении n при небольших степенях деформации и в узком их диапазоне. n может быть определена путем обработки опытных данных на ЭВМ методом наименьших квадратов, однако количество экспериментальных точек должно быть не менее 8-10 в рассматриваемом диапазоне степеней деформации или рассчитано по формуле

. (E.1)

Ключевые слова: методы испытания на сжатие, образцы, оборудование, аппаратура, методика, результаты испытаний, модуль упругости, предел пропорциональности, предел упругости, физический предел текучести, условный предел текучести, предел прочности для хрупких материалов, кривая упрочнения, напряжение течения, показатель деформационного упрочнения

СОДЕРЖАНИЕ

1 Область применения 1

2 Нормативные ссылки 2

3 Определения 2

4 Форма и размеры образцов 2

5 Требования к оборудованию и аппаратуре 4

6 Подготовка и проведение испытаний 5

Приложение А. Определение размеров образцов III, IV типов 13

Приложение Б. Виды кривых упрочнения 17

Приложение В. Конструкции приспособлений для испытаний образцов на сжатие 18

Приложение Г. Протоколы испытаний 19

Приложение Д. Сводный протокол испытания образцов I-IV типов для оценки механических характеристик и параметров аппроксимирующих уравнений кривых упрочнения 20

Приложение Е. Обработка экспериментальных данных для построения кривой упрочнения. Оценка параметров аппроксимирующих уравнений 20