ГОСТ 30323-95

ГОСТ Р 50254-92

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОРОТКИЕ ЗАМЫКАНИЯ
В ЭЛЕКТРОУСТАНОВКАХ

Методы расчета электродинамического
и термического действия тока короткого замыкания

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

ГОСТ 30323-95

ГОСТ Р 50254-92

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОРОТКИЕ ЗАМЫКАНИЯ В ЭЛЕКТРОУСТАНОВКАХ

Методы расчета электродинамического и термического действия
тока короткого замыкания

Short circuit in electrical installations.
Calculation methods of thermal and electrodynamic
effects of short circuit currents

Дата введения 1994-01-01

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет общую методику расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях.

Все пункты основного текста стандарта являются обязательными, а приложения - рекомендуемыми.

1 Общие положения

1.1 Выбор расчетных условий КЗ

1.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и на невозгораемость кабелей).

1.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

1.1.3 Расчетным видом КЗ следует принимать:

- при проверке электрических аппаратов и жестких проводников на электродинамическую стойкость - трехфазное КЗ;

- при проверке электрических аппаратов и проводников на термическую стойкость - трех- или однофазное КЗ, а на генераторном напряжении электростанций - трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

- при проверке гибких проводников по условию их допустимого сближения во время КЗ - трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему сближению проводников.

1.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание. Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы соответствующими ведомственными нормативно-техническими документами (НТД).

1.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость - путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

1.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

2 Электродинамическое действие тока КЗ

2.1 Расчет электродинамических сил взаимодействия проводников

2.1.1 Электродинамические силы взаимодействия двух параллельных проводников конечного сечения (F) в ньютонах следует определять по формуле

(1)

где 2×10-7 - постоянный параметр, Н/А2;

а - расстояние между осями проводников, м;

i1, i2 - мгновенные значения тока проводников, А;

l - длина проводников, м;

Кф - коэффициент формы.

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Диаграмма для определения коэффициентов формы шин прямоугольного сечения

Рисунок 1

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытного сечения с высотой сечения 0,1 м и более следует принять Кф = 1,0.

2.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

2.1.3 Максимальную силу (F) в ньютонах (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

(2)

где - ударный ток трехфазного КЗ, А;

- коэффициент, зависящий от взаимного расположения проводников;

а - расстояние между осями проводников, м;

l - длина пролета, м.

Значения коэффициента некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Схемы взаимного расположения шин

Рисунок 2

Таблица 1 - Значения коэффициента

Расположение шин

Расчетная фаза

Значение коэффициента для нагрузок

результирующей

изгибающей

растягивающей

сжимающей

1 В одной плоскости (рисунок 2а)

В

1,00

1,00

0

0

2 По вершинам равностороннего треугольника (рисунок 2б)

А

1,00

0,94

0,25

0,75

В

1,00

0,50

1,00

0

С

1,00

0,94

0,25

0,75

3 По вершинам прямоугольного равнобедренного треугольника (рисунок 2в)

А

0,87

0,87

0,29

0,87

В

0,95

0,43

0,83

0,07

С

0,95

0,93

0,14

0,43

4 По вершинам равностороннего треугольника (рисунок 2г)

А, В, С

1,00

0,50

1,00

0

При двухфазном КЗ

(3)

где - ударный ток двухфазного КЗ, А.

2.2 Выбор расчетной механической схемы шинных конструкций и гибких токопроводов

2.2.1 Методику расчета электродинамической стойкости шинных конструкций и гибких токопроводов следует выбирать на основе расчетной механической схемы, учитывающей их особенности.

2.2.2 Следует различать:

- статические системы, обладающие высокой жесткостью, у которых шины и изоляторы при КЗ остаются неподвижными;

- динамические системы с жесткими опорами, у которых изоляторы при КЗ могут считаться неподвижными, а шины колеблются;

- динамические системы с упруго податливыми опорами, в которых при КЗ колеблются шины и опоры;

- динамические системы с гибкими проводами.

2.2.3 Расчетные механические схемы шинных конструкций различных типов, обладающих высокой жесткостью, представлены в таблице 2.

Таблица 2 - Расчетная схема шинных конструкций

Номер схемы

Расчетная схема

Тип балки и опоры

Коэффициенты

l

b

r1

1

Однопролетная А и B - изоляторы-опоры

8

1

3,14

2

Однопролетная А - защемление шины; В - изолятор-опора

8

1,25

3,93

3

А и В - защемление шины на жестких опорах

12

1

4,73

4

Балка с двумя пролетами

8

1,25

3,93

5

Балка с тремя и более пролетами

10*

12**

1,13

1

4,73

* Для крайних пролетов,

** Для средних пролетов.

Расчетные схемы имеют вид равнопролетной балки, лежащей или закрепленной на жестких опорах и подвергающейся воздействию равномерно распределенной нагрузки.

Различают следующие типы шинных конструкций и соответствующих расчетных механических схем:

- шинные конструкции с разрезными шинами, длина которых равна длине одного пролета; расчетной схемой для них является балка с шарнирным опиранием на обеих опорах пролета (таблица 2, схема 1);

- шинные конструкции с разрезными шинами, длина которых равна длине двух пролетов, с жестким креплением на средней опоре; расчетной схемой для них является балка с жестким опиранием (защемлением) на одной и шарнирным на другой опоре пролета (таблица 2, схема 2);

- многопролетная шинная конструкция с неразрезными шинами; расчетной схемой для средних пролетов является балка с жестким опиранием (защемлением) на обеих опорах пролета (таблица 2, схема 3);

- шинные конструкции с разрезными шинами, длина которых равна двум, трем и более пролетам, без жесткого крепления на промежуточных опорах; расчетной схемой для них являются соответственно схемы 4 и 5 (таблица 2).

2.2.4 Расчетной схемой шинной конструкции с упруго податливыми опорами следует считать схему, в которой масса шины распределена по длине пролета, а опоры представлены телами с эквивалентной массой М и пружинами с жесткостью Соп.

2.2.5 Для гибких токопроводов в качестве расчетной схемы применяют схему с жестким стержнем, ось которого очерчена по цепной линии. Гирлянды изоляторов вводят в механическую схему в виде жестких стержней, шарнирно соединенных с проводами и опорами. Размеры стержней, расчетной схемы определяют из статического расчета на действие сил тяжести.

2.3 Допустимые механические напряжения в материале проводников и механические нагрузки на опоры при КЗ

2.3.1 Допустимое напряжение в материале жестких шин (sдоп) в паскалях следует принимать равным 70 % от временного сопротивления разрыву материала шин sр

(4)

Допустимые напряжения в материале шин следует принимать ниже пределов текучести этого материала.

Временные сопротивления разрыву и допускаемые напряжения в материалах шин приведены в таблице 3.

В случае сварных шин их временное сопротивление разрыву снижается. Значения временных сопротивлений разрыву в области сварных соединений определяют экспериментально; при отсутствии экспериментальных данных эти значения и значения допустимых напряжений следует принимать, используя данные таблицы 3.

Таблица 3 - Основные характеристики материалов шин

Материал шины

Марка

Временное сопротивление разрыву, МПа

Допустимое напряжение, МПа

Модуль упругости, 1010 Па

материала

в области сварного соединения

материала

в области сварного соединения

1 Алюминий

А0, А

АД0

118

59-69

118

59-69

82

41-48

82

41-48

7

7

2 Алюминиевый сплав

АД31Т

127

120

89

84

7

АД31Т1

196

120

137

84

7

АВТ1

304

152

213

106

7

1915T

353

318

247

223

7

3 Медь

МГМ

245-255

-

171,5-178

-

10

МГТ

245-294

-

171,5-206

-

10

2.3.2 Допустимую нагрузку на изолятор (изоляционную опору) (Fдоп) следует принимать равной 60 % от минимальной разрушающей нагрузки Fразр, приложенной к вершине изолятора (опоры) при изгибе или разрыве

(5)

2.3.3 В зависимости от взаимного расположения шин и изоляторов последние подвергаются воздействию электродинамических сил, работая на изгиб или растяжение (сжатие) или одновременно на изгиб и растяжение (сжатие). Допустимые нагрузки на изоляторы при изгибе (Fдоп.изг.) и растяжении (Fдоп.р ) в ньютонах в этих случаях следует принимать соответственно равными: