А.2.7 Вентиляция кожухов, кабин и машинных отделений


Когда машины для снижения шума снабжают кожухом, генерируемое внутри тепло должно быть удалено наружу, для чего необходима вентиляция. Вентиляционные системы снабжают глушителями для обеспечения акустической эффективности кожуха. Их эффективность должна быть на уровне требуемой звукоизоляции кожуха. Аналогичные устройства применяют для обеспечения персонала кабин свежим воздухом и для вентиляции машинных отделений.


А.2.8 Пневматический привод


Обычно глушители применяют при выпуске воздуха из пневматического инструмента и клапанов. Они должны иметь малые размеры и не должны сильно влиять на работоспособность оборудования даже при замасливании или загрязнении другим образом. Существует большое число доступных по цене устройств, удовлетворяющих этим требованиям.


А.2.9 Предохранительные клапаны


Требования к глушителям сброса, применяемым для предохранительных клапанов, обычно определяют с учетом объемного расхода среды, больших потерь давления и частой перемены давления во время перезапуска. Предъявляют специальные требования для обеспечения надежной работы после длительного простоя. Важно, чтобы элементы глушителя (такие как прессованный звукопоглощающий материал) не забивались льдом. При выборе глушителя сброса следует учитывать значительные силовые воздействия, возможные при его работе (см. также 6.3).


А.2.10 Печи (топки)


Для уменьшения шума горения и шума, производимого вытяжными вентиляторами, глушители устанавливают в выпускных каналах печей. Предъявляют специальные требования к глушителям, поскольку печи обычно работают при высокой температуре и часто дымовой газ переносит химически агрессивную пыль. Глушители используют также на установках очистки от серы (десульфурирования) и удаления азота (денитрования).


Важно провести тщательный выбор формы и материалов для предотвращения ухудшения характеристик глушителя из-за пылевых отложений. В этой сфере применения предпочтительными являются резонаторные глушители. Необходимо принимать во внимание наличие химически агрессивных жидкостей при запуске и останове печи.


А.2.11 Испытательное оборудование для газовых турбин и двигателей


В выпускном потоке газовых турбин глушители часто подвергаются воздействию повышенных температур, высоких скоростей и отложений. Такие условия работы требуют тщательного подбора материалов. Волокнистые поглотители должны быть термостойкими. Их волокна должны быть достаточно длинными, чтобы противостоять выдуванию пульсациями потока. Камеры, содержащие звукопоглощающий материал, должны быть не слишком велики и плотно заполнены без образования пустот. Покрытия (обычно многослойные) следует обеспечивать перфорированными пластинами, сеткой и/или тканью. Обычно в таких глушителях допускаются лишь небольшие потери давления.


А.2.12 Пневматические конвейеры


К производственной безопасности глушителей, используемых в системах вентиляции пневматических конвейеров силосных башен, дробильных установок и других производственных линий, предъявляют высокие требования из-за опасности пылевых отложений. Поэтому, как правило, применяют резонаторные глушители. Следует учитывать химические свойства транспортируемых материалов и требования взрывобезопасности (см. также 5.6).


А.3 Двигатели внутреннего сгорания


А.3.1 Транспортные средства


При работе двигателя внутреннего сгорания возникают шумы всасывания и выпуска, которые ослабляются глушителями в целях соответствия нормам как внешнего шума, так и шума внутри салона и обеспечения комфорта пассажиров.


Ослабления шума всасывания обычно достигают применением реактивных глушителей, объединяемых с воздушными фильтрами и в целом называемых ослабляющими фильтрами. Дальнейшее ослабление может быть достигнуто посредством дополнительных четверть волновых резонаторов в поперечном сечении и звукопоглощающих облицовок камеры глушителя.


Спектр выпускного шума определяется пульсирующим объемным расходом газа из цилиндров. Для ослабления шума преимущественно используют реактивные глушители. Для двигателей малой и средней мощности допускаются несколько большие потери давления по сравнению с диссипативными глушителями. Диссипативные глушители устанавливают только для выпускных систем двигателей с высокими техническими характеристиками, например с турбонаддувом и подобных им. Важно, чтобы поглотитель (предпочтительно базальтовая вата, иногда вместе с волокнами из нержавеющей стали) выдерживал нагрузки, вызванные пульсациями газа, вибрацией, высокими температурами и химическим воздействием. Поглотитель не должен отвердевать или забиваться отложениями из выпускного газа. Полые расширительные камеры без поглотителя следует проектировать так, чтобы позволять сконденсированной жидкости вытекать вместе с потоком газа. Реактивные и диссипативные глушители также применяют совместно.


В низкочастотной области ослабление определяется размерами и положением дефлекторов глушителя в выпускной магистрали. Насадки Вентури также используют для низкочастотного поглощения. В средне- и высокочастотной области эффективны боковые ответвления, перфорированные патрубки, экраны и изгибы (повороты, углы). Следует избегать глубоких минимумов в частотной характеристике ослабления воздушного шума и звукового излучения от корпуса. В автомобильных глушителях указанные требования трудновыполнимы из-за изменения рабочих температур, зависящих от нагрузки двигателя, числа оборотов и условий охлаждения вдоль выпускной магистрали.


А.3.2 Стационарные двигатели


С точки зрения выбора системы глушителя стационарные двигатели внутреннего сгорания отличаются от автомобильных двигателей в нескольких аспектах, в частности имеются фиксированные режимы работы, диапазон изменения скорости в которых для каждого двигателя значительно сужен. В противоположность автомобильным двигателям диапазоны выходных мощностей для различных установок могут значительно различаться (до нескольких мегаватт). Вследствие этого применяют глушители различных типов. Часто акустические требования являются повышенными, например для установок в госпиталях. Кроме того, иногда недопустимы большие потери давления. В данном случае определенные типы автомобильных глушителей не могут быть использованы. В стационарных установках большой выходной мощности частота системы зажигания, как правило, является низкой. Это требует тщательного выбора места размещения глушителя для низких частот (ниже 100 Гц).




Приложение В

(рекомендуемое)

Влияние спектрального распределения звука на заявленное

значение ослабления в 1/3-октавных или октавных полосах частот


В соответствии с [1] значения ослабления глушителя определяют для 1/3-октавных частотных полос. Их преобразование в значения для октавных полос может быть выполнено с помощью равенства (1). Однако результаты преобразования являются точными только для розового шума. Если источник излучает шум, в спектре которого значения уровней звуковой мощности для 1/3-октавных полос внутри одной октавной полосы значительно различаются, реальное ослабление для этой октавной полосы может существенно отличаться от вычисленного.


Отличия для октавной полосы 63 Гц являются наиболее важными на практике. В таблице В.1 приведен пример преобразования 1/3-октавных значений ослабления в октавные. 1/3-октавные значения (50, 63, 80 Гц) получены на основе результатов измерений при лабораторных испытаниях искусственного источника розового шума и двух типов вентиляторов. Указанные октавные значения - реально измеренные.


Как видно из таблицы В.1 и рисунка В.1, реальные значения ослабления в 1/3-октавных полосах частот совпадают с заявленными, однако заявленное производителем октавное значение ослабления 7 дБ существенно превышено для осевого вентилятора. Эффективность глушителя в данном случае значительно лучше, чем требуется. Напротив, соотношение между 1/3-октавными составляющими спектра шума радиального вентилятора с наклонными лопатками таково, что в октавной полосе достигается ослабление лишь 5 дБ. Заявленное значение 7 дБ в данном случае не было подтверждено при лабораторных испытаниях, выполненных в соответствии с [1].



Таблица В.1 - Пример преобразования ослабления для 1/3-октавных частотных полос в соответствующее ослабление для октавных частотных полос


Ослабление, дБ


Среднегеометрическая частота, Гц



1/3-октавные полосы частот


Октавная полоса частот



50


63


80


63


Заявленное ослабление


3


12


21


7


Искусственный источник розового шума:


Уровень звуковой мощности источника


90


90


90


95


Уровень звуковой мощности после ослабления шума глушителем


87


78


69


88


Реальное ослабление


3


12


21


7


Осевой вентилятор:


Уровень звуковой мощности источника


84


88


93


95


Уровень звуковой мощности после ослабления шума глушителем


81


76


72


83


Реальное ослабление


3


12


21


12


Радиальный вентилятор:


Уровень звуковой мощности источника


93


88


84


95


Уровень звуковой мощности после ослабления шума глушителем


90


76


63


90


Реальное ослабление


3


12


21


5




1 - 1/3-октавные полосы; 2 - октавная полоса


Рисунок В.1 - Графическая иллюстрация примера на основе данных таблицы В.1:


а - розовый шум; b - осевой вентилятор; с - радиальный вентилятор


Приложение С

(справочное)

Рабочие температуры источников звука и пределы

температур для звукоизолирующих материалов


Таблица С.1 - Возможные температуры для различных источников звука


Источник звука


Температура, °С


Паровой клапан


530


Газовая турбина


600

Реактивный двигатель


800


Компрессор


200


Автомобильный двигатель


От 400 до 800




Таблица С.2 - Предельные температуры для различных звукопоглощающих материалов


Материал


Ориентировочная предельная температура, °С


Шерсть (войлок)


50


Полимерная пена (пенопласт)


От 150 до 200


Стекловолоконная ткань


300


Минеральная вата:




- со связующим


220


- без связующего


500


Специальное базальтовое волокно


750


Спеченный металл:




Бронза


400


Нержавеющая сталь


600


Специальный металл


1000


Ткань из нержавеющей стали


500



В специальных случаях 600



Библиография


[1]

ISO 7235

Acoustics - Measurement procedures for dueled silencers - Insertion loss, flow noise and total pressure loss


[2]

U.J.Kurze, Performance of silencers in situ (in German), Report UBA-FB 105 01 999/12, Federal Agency for Environment, Berlin, Germany, 1994


[3]

ISO 9053:1991

Acoustics - Materials for acoustical applications - Determination of airflow resistance.


[4]

U.Ackermann, H.V.Fuchs, Technical Note: Noise reduction in an exhaust steck of a papermill, J.Noise Control Eng., 33, 1989, 57-60


[5]

M.Abom, Derivation of four-pole parameters including higher order mode effects for expansion chamber mufflers with extended inlet and outlet, J.Sound Vib., 137, 1990, 403-418


[6]

ISО 11691

Acoustics - Measurement of insertion loss of dueled’ silencers without flow - Laboratory survey method