9.4.9. Индикаторный адсорбент, насыщенный хлористым кобальтом, для повторного использования восстанавливается прогревом при 120 °С в течение 15 - 20 ч до принятия всей массы адсорбента голубой окраски. Нагрев адсорбента до 200 - 300 °С не рекомендуется, так как при этом хлористый кобальт разлагается.

9.4.10. Установка воздухоосушительных фильтров к гидрозатворам вводов осуществляется в соответствии с Противоаварийным циркуляром № Э-3/69 «О повышении надежности работы вводов 110 - 500 кВ с бумажно-масляной изоляцией негерметичного исполнения» (М.: СЦНТИ ОРГРЭС, 1969).

В связи с небольшой вместимостью по адсорбенту воздухоосушительных фильтров вводов, измерительных трансформаторов и воздухоосушительных патронов баков контакторов устройств РПН, в них следует использовать только силикагель-индикатор по ГОСТ 8984-75 или ИС-2 по ТУ 113-12-11.075-87.

9.5. Специальные средства защиты масла от окисления применяются для исключения возможности непосредственного контакта масла в расширителе при «дыхании» трансформатора с кислородом воздуха, т.е. практически полного устранения главной причины старения масла - окисления.

Однако процессы старения масла наблюдаются и при использовании специальных средств защиты от окисления.

Процессы старения масла в герметичном оборудовании будут проявляться, в основном, в потемнении масла и увеличении tg δ.

Чем больше содержит масло смолистых веществ, полициклических ароматических и нафтено-ароматических углеводородов, тем интенсивнее идут процессы уплотнения углеводородов, ведущие к потемнению масла и увеличению tg δ. Эти процессы интенсифицируются электрическим полем.

Следовательно, особенно интенсивно процессы уплотнения протекают в маслах с высоким содержанием ароматических углеводородов и смол, таких как ТАп и ТКп.

Поэтому наиболее полно характеризует степень старения масла в герметичных трансформаторах с азотной или пленочной защитой такой показатель качества масла, как tg δ. В процессе эксплуатации может происходить снижение пробивного напряжения масла и увеличение влагосодержания за счет образования реакционной воды при старении в основном твердой изоляции.

9.5.1. Трансформатор с пленочной защитой заливается дегазированным маслом.

В эксплуатации для оценки герметичности защиты выполняется контроль общего газосодержания масла. Определение газосодержания можно осуществлять хроматографическим методом для определения растворенных газов. О надежности защиты косвенно можно судить также по показателям кислотного числа и содержанию антиокислительной присадки в масле.

9.5.2. Трансформаторы с азотной защитой необходимо заливать специально обработанным маслом (дегазированное и азотированное).

При эксплуатации трансформаторов с азотной защитой проверяется избыточное давление в системе (оно должно составлять 290 Па) и раз в шесть месяцев определяется чистота азота в надмасленном пространстве с помощью газоанализатора ВТИ-2 ГОСТ 5439-76 или хроматографическим методом.

9.6. Химическая защита масла от старения осуществляется с помощью ингибиторов окисления.

9.6.1. Все отечественные трансформаторные масла, выпускаемые в настоящее время, содержат антиокислительную присадку ионол (2,6 - дитретбутил; 4 - метилфенол),

Количество ионола в свежем трансформаторном масле зависит от марки масла и должно быть не менее 0,2 % массы.

В присутствии ионола процесс термоокислительного старения масла находится в индукционном периоде, который характеризуется малыми скоростями образования различных продуктов окисления и как следствие малым изменением показателей качества масла. Оптимальным содержанием присадки в масле является количество 0,2 - 0,3 % массы. Ионол в масле находится в растворенном состоянии и практически не извлекается из масла различными адсорбентами при непрерывной регенерации.

Эффективность работы ионола, как ингибитора окисления, значительно выше в глубоко очищенных маслах с малым содержанием ароматических углеводородов и смол, таких как масло гидрокрекинга марки ГК.

9.6.2. При эксплуатации трансформаторного масла идет процесс непрерывного расхода ионола, скорость которого зависит от многих факторов и в первую очередь от температуры и концентрации кислорода в масле. С их увеличением растет и расход ионола.

При снижении концентрации ионола в эксплуатационном масле ниже определенного предела (ниже 0,1 % массы) начинается процесс интенсивного старения масла, обусловленный значительным снижением стабильности против окисления. Снижение стабильности против окисления объясняется тем, что при малых концентрациях ионола в масле, он перестает работать как ингибитор окисления и становится инициатором окисления.

Эксплуатация трансформаторного масла с содержанием ионола ниже 0,1 % массы недопустима потому, что при этом возможно образование шлама и ухудшение эксплуатационных свойств масла, что ведет к значительному увеличению расхода силикагеля в фильтрах трансформаторов для поддержания эксплуатационных свойств масла или к необходимости последующей замены масла на свежее.

Поэтому необходимо в процессе эксплуатации контролировать содержание ионола и вводить его в масло при снижении концентрации ионола до 0,1 % массы в количестве 0,2 - 0,3 % массы.

Введение ионола в эксплуатационное масло, в котором образовался шлам, а также с КЧ более 0,1 мг КОН/г, неэффективно, поэтому перед введением присадки необходима регенерация такого масла крупнопористым адсорбентом (п. 10.2).

9.6.3. Для определения содержания ионола в трансформаторном масле (свежем, эксплуатационном и регенерированном) на энергопредприятиях следует применять метод тонкослойной хроматографии (приложение 3).

9.6.4. Присадку ионол следует вводить в масло непосредственно в баке электрооборудования или на маслохозяйстве (для слитого из оборудования масла).

Ионол вводят в трансформатор следующими способами:

подача концентрированного раствора (до 20 %) ионола через нижний боковой кран трансформатора в эксплуатационное масло;

долив трансформатора концентрированным раствором ионола через расширитель;

загрузка ионола в один из адсорбционных фильтров трансформатора вместо силикагеля и включения фильтра в работу.

Наиболее предпочтителен способ введения ионола посредством концентрированного раствора через нижний боковой кран трансформатора, так как обеспечивает быстрое и равномерное распределение присадки во всем объеме масла.

Технологическая схема подачи концентрированного раствора ионола в трансформаторное масло, залитое в оборудование, приведена на рис. 3.

Рис. 3. Технологическая схема подачи концентрированного раствора ионола в трансформаторное масло, залитое в оборудование:

1 - передвижная емкость для раствора ионола; 2 - маслонасос; 3 - фильтр тонкой очистки масла; 4 - нижний боковой кран трансформатора; 5 - бак трансформатора; 6 - трубопроводы (шланги); 7 - расширитель.

Концентрированный (до 20 %) раствор ионола в свежем, сухом трансформаторном масле готовят на маслохозяйстве в специальном баке, который оборудуется мешалкой и подогревом. Нагрев бака может осуществляться электронагревателем или змеевиком, через который пропускается пар давлением 0,1 - 0,2 МПа или сетевая вода температурой 85 - 110 °С. Вместо механической мешалки перемешивание раствора в баке может осуществляться путем барботирования его азотом.

Оптимальная температура приготовления раствора 60 °С. Для приготовления раствора бак заполняется на 3/4 объема маслом, затем включается обогрев и при перемешивании масло нагревают до оптимальной температуры.

Постепенно мелкими порциями в бак вводят расчетное количество присадки при непрерывном перемешивании до полного ее растворения в масле. Затем готовый раствор из бака фильтруют и закачивают в специальную емкость, где он может храниться до введения его в эксплуатационное масло.

Пунктиром обозначена линия введения раствора ионола в расширитель трансформатора

Нагрев масла до 60 °С, а также его непрерывную циркуляцию в баке для приготовления раствора можно осуществлять с помощью вакуумного сепаратора типа ПСМ.

При заливе концентрированного раствора в трансформатор раствор должен удовлетворять норме по пробивному напряжению свежего масла для данного класса оборудования (для трансформаторов, оборудованных пленочной или азотной защитой, раствор должен быть дегазирован).

При обеспечении надежной герметичности схемы подачи раствора и требований техники безопасности ионол может вводиться по схеме рис. 3 в оборудование, находящееся под напряжением.

9.6.5. Определить количество ионола и свежего масла, необходимого для приготовления концентрированного раствора с целью стабилизации эксплуатационного масла, можно по формуле

где Р - количество присадки ионол, необходимое для стабилизации эксплуатационного масла, т;

Q - количество эксплуатационного масла, подлежащего стабилизации ионолом, т;

n - задаваемое содержание присадки ионол в стабилизированном масле, % массы (от 0,2 до 0,3 %);

где q - количество свежего трансформаторного масла, необходимого для приготовления концентрированного раствора, т;

N - содержание присадки ионол в концентрированном растворе, % массы (до 20 %).

9.6.6. Для продления срока службы эксплуатационных трансформаторных масел в трансформаторах 3 и 4 габаритов, а также для снижения tg δ можно использовать деактивирующие присадки антраниловая кислота, бетол и некоторые другие.

Эти присадки могут вводиться в масло в соответствии с Типовой инструкцией по продлению срока службы трансформаторных масел с помощью присадки «Антраниловая кислота». ТИ 34-70-007-82 (М.: СПО Союзтехэнерго, 1982).

Оптимальное количество присадки «Антраниловая кислота» составляет 0,02 - 0,04 % массы и при применении деактивирующих присадок необходимо отключение адсорбционных и термосифонных фильтров на начальной стадии эксплуатации масел с данными присадками.

10. РЕГЕНЕРАЦИЯ ТРАНСФОРМАТОРНОГО МАСЛА В ОБОРУДОВАНИИ

10.1. Непрерывная регенерация масла крупнопористыми адсорбентами с помощью адсорбционных и термосифонных фильтров в процессе эксплуатации позволяет удалить большую часть продуктов старения и замедлить процесс старения масла.

Однако при интенсивном старении масла, вызванном различными факторами (конструктивные дефекты, работа оборудования в перегруженном режиме, малое содержание антиокислительной присадки ионол в масле и другие) и отсутствием возможности своевременной замены адсорбента в термосифонных или адсорбционных фильтрах некоторые показатели качества масла могут превысить предельно допустимые значения и становится необходимой замена или регенерация масла. Регенерация значительно выгоднее, чем замена масла на свежее.

Необходимость регенерации масла крупнопористым адсорбентом возникает при превышении одного или нескольких показателей качества предельного значения таких, как:

кислотное число - 0,25 мг КОН/г масла;

содержание водорастворимых кислот - 0,014 мг КОН/г масла;

тангенс угла диэлектрических потерь при 90 °С для оборудования 1150 кВ - 4 %, 750 кВ - 5 %, 220 - 500 кВ вкл. - 10 %, 110 - 150 кВ вкл. 15 %;

наличие растворенного шлама в оборудовании свыше 220 кВ.

10.2. Регенерация масла осуществляется непосредственно в оборудовании с помощью маслорегенерационных установок.

Основной рабочий блок таких установок составляют перколяторы (адсорберы).

Технологическая схема регенерации трансформаторного масла крупнопористым адсорбентом непосредственно в оборудовании приведена на рис. 4.

Рис. 4. Технологическая схема регенерации трансформаторного масла крупнопористым адсорбентом непосредственно в оборудовании:

1 - бак трансформатора; 2 - расширитель; 3 - маслонасос; 4 - подогреватель; 5 - адсорберы с крупнопористым адсорбентом; 6 - фильтр тонкой очистки (фильтр-пресс); 7 - манометр; 8 - расходомер; 9 - подсоединительные трубопроводы (шланги); 10 - трехходовые краны; 11 - вентили; 12 - нижний боковой кран трансформатора

В качестве подогревателя масла можно использовать электроподогреватель установки ПСМ или УВМ. Совместное применение адсорберов и установки УВМ позволяет проводить регенерацию масла в оборудовании, находящимся под напряжением, при обеспечении полной герметичности технологической схемы и выполнении требований техники безопасности.

Оптимальная температура регенерации масла составляет 70 - 80 °С. Расход силикагеля зависит от степени старения масла и составляет 1 - 2 % массы от регенерируемого масла.

В настоящее время промышленные установки для регенерации трансформаторных масел не выпускаются.

Маслорегенерационные установки по приведенной выше технологической схеме могут временно монтироваться рядом с оборудованием из штатного оборудования маслохозяйства или выполняться в передвижном варианте на автоприцепе.

10.3. В процессе регенерации масла рекомендуется определять следующие показатели качества масла:

кислотное число;

содержание водорастворимых кислот;

tg δ при 90 °С.

Наиболее удобно осуществлять контроль за процессом регенерации масла по изменению кислотного числа.

После регенерации необходимо провести сокращенный анализ масла, определить tg δ при 90 °С и отсутствие растворенного шлама (только для масел, в которых шлам был обнаружен до регенерации). Дополнительно необходимо определить содержание ионола и (или) стабильность против окисления. Показатели качества регенерированного масла (без слива из оборудования) должны удовлетворять нормам на эксплуатационное масло (см. табл. 5) и иметь кислотное число не более 0,05 мг КОН/г при нейтральной реакции водной вытяжки.

В случае низкой стабильности против окисления регенерированного масла и (или) малого содержания антиокислительной присадки ионол (менее 0,1 % массы) необходимо ввести ионол в количестве 0,2 - 0,3 % массы в соответствии с п. 9.6.4 настоящих Методических указаний.

11. ВОССТАНОВЛЕНИЕ ОТРАБОТАННЫХ АДСОРБЕНТОВ