внешнего вида и цвета;

наличия механических примесей и свободной воды (визуальное);

пробивного напряжения;

кислотного числа;

температуры вспышки;

реакции водной вытяжки (количественное определение содержания водорастворимых кислот выполняется при кислой реакции водной вытяжки).

Как правило, при нормальной эксплуатации, когда показатели качества эксплуатационного масла не приближаются к предельно допустимым значениям и не наблюдается ухудшения характеристик твердой изоляции, сокращенного анализа достаточно для контроля состояния масла и прогнозирования срока службы масла.

6.2.2. Полный анализ масла помимо испытаний, входящих в объем сокращенного анализа, включает определение следующих показателей:

тангенса угла диэлектрических потерь при 90 °С (при необходимости также и при других температурах, например при 20 и 70 °С);

количественного содержания механических примесей;

количественного содержания воды;

газосодержания;

наличия растворенного шлама (потенциального осадка);

содержания антиокислительной присадки ионол;

стабильности против окисления.

Полный анализ эксплуатационного масла следует производить при приближении одного или нескольких показателей качества масла к предельно допустимому значению, а также при ухудшении характеристик твердой изоляции и (или) интенсивном старении масла, с целью определения причин данных процессов. Полный анализ позволяет более достоверно прогнозировать дальнейший срок службы эксплуатационного масла, выявлять причины загрязнения и правильно выбрать необходимые мероприятия по восстановлению его эксплуатационных свойств.

Кроме выше перечисленных показателей полный анализ может включать в себя определение таких показателей, как температура застывания, содержание серы, плотность, вязкость, поверхностное натяжение, показатель преломления () и некоторых других. Определение этих показателей, в основном, необходимо для определения типа масла (например для импортных масел) и его химического состава с целью оценки эксплуатационных свойств.

Хроматографический анализ растворенных в масле газов может входить в объем полного анализа эксплуатационного масла. Данный метод является специальным методом, служащим для обнаружения повреждений и дефектов отдельных конструктивных узлов и всей твердой изоляции электрооборудования, но практически не информирующем о качестве и состоянии самого масла.

6.2.3. Различные испытания, входящие в объем эксплуатационного контроля трансформаторного масла, выполняются по стандартным методикам в соответствие с требованиями ГОСТ или ТУ, кроме определения количественного содержания водорастворимых кислот, шлама и антиокислительной присадки (см. табл. 5).

6.2.4. Цвет трансформаторного масла определяется при рассмотрении в проходящем свете и выражается числовой оценкой, основанной на сравнении с рядом цветовых стандартов. Внешний вид масла может быть мутным, с осадками и взвешенными частицами различных загрязнений. Цвет и внешний вид не являются решающими показателями для отбраковки масла, но дают полезную информацию о проведении необходимого объема испытаний масла.

6.2.5. Пробивное напряжение является важнейшим показателем качества масла, который характеризует способность жидкого диэлектрика выдерживать электростатическое напряжение без пробоя, т.е. определяет безаварийную работу всей системы изоляции оборудования. Определение значений пробивного напряжения по ГОСТ 6581-75 зависит от температуры испытуемого масла. Следует в протоколе указывать температуру масла при данном испытании и при прочих равных условиях результата следует считать сопоставимыми, если разность температур при определении Uпр не превышает 2 С.

6.2.6. При приближении пробивного напряжения к предельно допустимому значению следует определить количественное влагосодержание масла. Влагосодержание также позволяет определить причину ухудшения характеристик твердой изоляции.

6.2.7. Кислотное число (КЧ) является основным показателем, характеризующим степень старения масла. Кроме КЧ степень старения характеризуют такие показатели как tg δ, влагосодержание и реакция водной вытяжки (содержание водорастворимых кислот).

6.2.8. Тангенс угла диэлектрических потерь является показателем качества масла чувствительным к присутствию в масле различных загрязнений [коллоидных (мелкодисперсных) образований, растворимых металлоорганических соединений (мыл) и различных продуктов старения масла и твердой изоляции]. Определение tg δ позволяет выявить незначительные изменения свойств масла даже при очень малой степени загрязнения, которые не определяются химическими методами контроля. Характер температурной зависимости tg δ позволяет определить тип загрязнения.

6.2.9. Газосодержание в основном характеризует эффективность действия пленочной защиты трансформаторов.

6.2.10. Снижение температуры вспышки трансформаторного масла указывает на наличие в оборудовании дефектов, приводящих к разложению масла и образованию воспламеняющихся летучих фракций.

Данные, полученные с помощью этого метода, в определенной мере дублируются данными, полученными хроматографическим анализом растворенных газов.

6.2.11. Определение наличия растворенного шлама является важным испытанием, так как позволяет выявить наличие растворенных в масле продуктов глубокого старения, способных выпадать в виде осадка на активной части электрооборудования. Продукты старения, выпадающие в осадок, оказывают наиболее отрицательное воздействие на твердую изоляцию.

6.2.12. Содержание ионола в эксплуатационном масле и стабильность против окисления являются наиболее точными показателями, характеризующими срок службы масла.

6.3. Периодичность проведения испытаний определяется классом оборудования и состоянием масла.

6.3.1. Периодичность определения значений показателей качества трансформаторного масла в процессе эксплуатации должна быть следующей:

сокращенный анализ масла должен выполняться не реже одного раза в три года для силовых трансформаторов мощностью более 630 кВ · А напряжением 6 кВ и выше, для измерительных трансформаторов напряжением 110 кВ и выше, негерметичных маслонаполненных вводов;

сокращенный анализ масла должен выполняться для герметичных маслонаполненных вводов при повышенных значениях tg δ изоляции или повышении давления во вводе выше нормы, для силовых трансформаторов при срабатывании газового реле на сигнал;

тангенс угла диэлектрических потерь эксплуатационного масла должен определяться не реже одного раза в три года для силовых и измерительных трансформаторов, негерметичных маслонаполненных вводов напряжением 220 кВ и выше;

тангенс угла диэлектрических потерь эксплуатационного масла должен определяться для герметичных маслонаполненных вводов при повышении давления во вводе выше нормы, а также для всех видов оборудования при значительном ухудшении характеристик твердой изоляции (tg δ и R60) или срабатывании газового реле трансформаторов на сигнал;

тангенс угла диэлектрических потерь и пробивное напряжение эксплуатационного масла должны определяться для силовых трансформаторов 500 кВ и выше через три месяца после включения в работу и в дальнейшем с периодичностью, указанной выше;

масло из трансформаторов мощностью менее 630 кВ · А включительно в процессе эксплуатации не проверяется;

масло из баковых масленных выключателей должно испытываться по пп. 1 и 2 (см. табл. 5) после капитального и внепланового ремонтов, а также в случае выполнения ими предельно допустимого числа коммутаций (отключения и включения) токов КЗ; масло из баковых выключателей до 35 кВ включительно и маломасленных выключателей всех классов напряжения после выполнения ими предельно допустимого числа коммутаций токов КЗ без ремонта может не испытываться, а заменяться на свежее; после текущего ремонта баковых выключателей испытание масла следует проводить по п. 1 (см. табл. 5);

масло в баке контактора устройства РПН, должно испытываться по пп. 1 и 7 (см. табл. 5) после определенного числа переключений, указанного в заводской инструкции по эксплуатации данного переключателя, но не реже одного раза в год, возможно качественное определение п. 7 по ГОСТ 1547-84, если отсутствует требование завода-изготовителя по количественному определению данного показателя; масло должно быть заменено на свежее в случае превышения предельно допустимого значения, указанного в пп. 1 и 7 или достижения предельного числа переключений, указанных в инструкции по эксплуатации данного устройства РПН;

масло из трансформаторов, оборудованных пленочной защитой должно испытываться по пп. 7 и 8 (см. табл. 5), азотной защитой по п. 7 с периодичностью сокращенного анализа.

6.3.2. Следует отметить, что учащенному контролю должны подвергаться масла из трансформаторов, работающих в перегруженном режиме, из оборудования, к которому предъявляется требование повышенной надежности работы, а также в том случае, если любой из показателей качества (см. табл. 5) эксплуатационного масла приближается к предельно допустимому значению.

6.4. Основная задача персонала при отборе проб - обеспечить тождественность пробы маслу, содержащемуся в оборудовании или в емкости.

6.4.1. Отбор проб свежих масел из транспортной емкости должен осуществляться в соответствии с требованиями ГОСТ 2517-80.

В случае несоблюдения процедуры отбора проб, указанной в ГОСТ 2517-80, претензия по качеству поступившего масла не будет обоснованной.

6.4.2. Небрежный отбор проб или загрязнение пробоотборной посуды приводит к ошибочным заключениям в отношении качества масла и к неоправданной потере времени, трудозатрат и расходов на транспортирование и контроль проб.

6.4.3. При отборе проб эксплуатационного масла следует соблюдать следующие основные правила:

отбор проб должен выполняться квалифицированным специалистом;

не следует выполнять отбор проб масла при плохой погоде (осадки, сильный ветер с пылью и другое) с высоким риском попадания загрязнений из окружающей среды в пробу масла, при необходимости срочного отбора проб в неблагоприятных условиях следует соблюдать дополнительные меры предосторожности;

использовать только специально подготовленную сухую и чистую посуду - стеклянные бутылки или бесшовные металлические банки, посуду из пластика можно использовать, если доказана возможность ее применения для этой цели;

слить достаточное количество масла (не менее двух объемов посуды) для удаления каких-либо загрязнений, которые могут находиться на пробоотборном патрубке;

ополоснуть пробоотборную посуду отбираемым маслом;

обеспечить наполнение каждого сосуда не менее 95 % его вместимости;

сразу после заполнения сосуд с пробой закупоривается пробкой;

после отбора пробы восстановить первоначальный вид пробоотборной точки;

проверить правильность и полноту маркировки этикетки;

хранить образцы в темном месте, если в качестве пробоотборника использовались прозрачные бутылки.

6.4.4. Отбор проб из оборудования должен производиться при обычном режиме работы оборудования или сразу после его отключения. Эту рекомендацию особенно важно выполнять, когда определяется влагосодержание или зависящие от него характеристики. В этих случаях должна быть измерена и зафиксирована температура масла во время отбора проб.

6.4.5. После доставки проб в лабораторию не рекомендуется сразу открывать бутыль, а необходимо подождать до тех пор, пока температура пробы не достигнет комнатной температуры.

7. ПРИМЕСИ В МАСЛЕ, МЕТОДЫ И ОБОРУДОВАНИЕ ДЛЯ ИХ УДАЛЕНИЯ

7.1. В процессе эксплуатации электротехнического оборудования в трансформаторном масле образуются и накапливаются различные продукты старения масла и твердой изоляции, находящиеся в масле в дисперсном состоянии такие, как вода, шлам, уголь, волокна твердой изоляции, частицы адсорбентов и другие механические примеси.

7.2. Для удаления примесей из трансформаторного масла применяются физические методы очистки, которые не изменяют химического состава масла. К данным методам относятся фильтрация, центрифугирование, отстой и различные способы осушки.

7.3. В эксплуатационном трансформаторном масле содержится вода, образующаяся в процессе старения масла и изоляции, а также попадающая в масло из окружающей среды.

Вода является наиболее опасной примесью в масле так как даже небольшое количество ее значительно снижает пробивное напряжение трансформаторного масла. В эксплуатационном масле вода может находиться в виде раствора и эмульсии.

Наибольшее отрицательное влияние на электрическую прочность масла оказывает вода в дисперсном (эмульгированном) состоянии. Между растворенным и дисперсным состояниями воды в масле существует определенное равновесие, зависящее от внешних факторов, в первую очередь от температуры масла. С повышением температуры равновесие сдвигается в сторону увеличения содержания растворенной воды.

7.4. Для удаления дисперсной воды целесообразно применять методы центрифугирования и вакуумирования. Растворенная вода, которая не может быть отделена от масла в центробежном поле сепаратора, эффективно удаляется методами вакуумирования и адсорбционной обработки (молекулярными ситами).

7.5. В настоящее время на энергопредприятиях для очистки трансформаторных масел от дисперсной и частично от растворенной влаги, механических примесей и шлама наиболее широко применяются маслоочистительные машины (сепараторы) производства Полтавского турбомеханического завода:

вакуумная маслоочистительная установка ПСМ1-3000. Предназначена для очистки трансформаторных масел от дисперсной влаги и механических примесей;

вакуумная маслоочистительная установка ПСМ2-4 является модернизированным вариантом установки ПСМ1-3000, серийное производство которой начато в 1984 г. Предназначена для очистки трансформаторных масел от дисперсной воды и механических примесей. По техническим характеристикам и степени очистки масла установка ПСМ2-4 превосходит ПСМ1-3000. В настоящее время предприятием Минэнерго СССР поставляются только установки ПСМ2-4.