Двухцепная линия. Для такой линии (см. рис. 3.3, б) следует использовать отношения автономных параметров и применительно к цепи WI и цепи WII:
(3.10)
(3.11)
Кроме формул (3.10) и (3.11), для двухцепных ВЛ могут быть получены другие формулы, основанные на различных сочетаниях отношений автономных параметров и , являющихся функцией расстояния до мест КЗ [8]. Это позволяет повысить достоверность ОМП.
Пассивные параметры и следует вычислять по формулам:
(3.12)
где - ток в к-м полюсе при условии, что все полюсы, кроме i-го, соединены накоротко с соответствующим базисным полюсом;
- напряжение между i-м полюсом и соответствующим базисным полюсом при тех же условиях;
- напряжение между к-м и базисным полюсом при условии, что все полюсы, кроме i-го, разомкнуты;
- ток в i-м полюсе при тех же условиях.
Параметры и рассчитываются с помощью ЭВМ либо модели.
Расчетные выражения (3.8) - (3.11) и соответствующие характеристики l = f() и l = F() составляются для каждой ВЛ. Учитывая относительную простоту расчетных выражений (они аналогичны формулам для ОМП ВЛ без ответвлений), определение мест КЗ методом активного многополюсника выполняется с использованием простейших вычислительных средств. Применение ЭВМ может оказаться необходимым лишь при расчете пассивных параметров в формулах для ОМП.
При включении фиксирующих амперметров двухцепных ВЛ на сумму токов обеих цепей для определения мест КЗ могут быть использованы соотношения (3.8) и (3.9), поскольку схема замещения ВЛ в этом случае представляется активным четырехполюсником.
Таким образом метод активного многополюсника следует применять для ОМП как одноцепных, так и двухцепных ВЛ с ответвлениями с использованием соответствующих графических характеристик или таблиц. Расчет автономных параметров может выполняться предварительно на модели линии либо с использованием ЭВМ.
3.1.3. Метод, основанный на решении системы линейных алгебраических уравнений
В ряде случаев целесообразно дополнительное измерение тока на подстанции ответвления [27]. Это может иметь место, в частности, при изменении режима работы силовых трансформаторов ответвительных подстанций, что приводит к переменному значению сопротивления ответвления в схеме замещения. Ниже рассматривается этот метод применительно к ВЛ различных видов.
Многоцепная линия. Для такой линии справедлива [8] система уравнений:
(3.13)
где m1, …, mN - доля участка ВЛ между ответвлениями L1, ..., LN от протяженности цепи (m1 = L1/L, mN = LN/L);
, , …, , ..., , , ..., - токи на подстанциях ответвлений В, ..., N - 1 соответственно от цепей I, II, ..., p.
Относительное расстояние nI для поврежденной линии следует определять по выражению
nI = , (3.14)
где D = - определитель системы уравнений;
DnI = - определитель, получающийся из определителя D путем замены столбца, составленного из коэффициентов при неизвестном n1, столбцом, составленным из свободных членов уравнений (3.13).
Аналогично определяется место КЗ на остальных линиях.
Одноцепная линия. Расчетные формулы для ОМП получаются из первого уравнения (3.13) в зависимости от числа ответвлений. Так, для наиболее распространенных воздушных линий с одним ответвлением расчетная формула имеет вид
l = nL = . (3.15)
Двухцепная линия. Здесь также расчетные формулы получаются решением системы из двух первых уравнений (3.13). Применительно к двухцепным ВЛ с одним ответвлением от каждой цепи, работающим на общие шины с двух концов, расстояние до мест КЗ, например, цепи W1 следует определять по формуле
lI = nILI = . (3.16)
В целях повышения точности и достоверности расчета расстояния целесообразно одновременное измерение геометрической суммы и разности токов обеих цепей [28]. В этом случае при раздельной работе цепей по концам получаем:
. (3.17)
где , и , - напряжения нулевой (обратной) последовательности по концам первой и второй цепей ВЛ на концевых подстанциях;
, и , - геометрическая сумма и разность токов нулевой (обратной) последовательности обеих цепей;
, - геометрическая сумма и разность токов нулевой (обратной) последовательности обеих цепей линии на ответвительных подстанциях.
Формулы (3.17) следует главным образом применять, если на подстанции ответвления установлены трансформаторы с одинаковыми сопротивлениями. При этом в случае отключения трансформатора цепи WI для определения места КЗ на ней во второй формуле (3.17) перед знак «плюс» должен быть заменен на «минус». Если же сопротивления ответвлений не равны между собой, то в ряде случаев также может изменяться направление тока , что требует установки реле направления мощности.
Для исключения контроля направления тока следует на подстанциях ответвлений измерять токи каждого из ответвлений [29]. В этом случае в первой формуле (3.17) вместо тока подставляется сумма токов ( + ), а во второй формуле вместо тока - разность токов ( - ).
Расчетные формулы рассматриваемого метода сравнительно просты и не требуют при определении мест повреждения использования ЭВМ.
3.2. Односторонние измерения
3.2.1. Измерение сопротивления участка ВЛ до места КЗ
Для ВЛ с ответвлениями также используется фиксирующий индикатор ФИС, указания по применению которого изложены в п. 2.2.1. Ниже излагаются особенности выбора уставок индикатора для таких ВЛ, обусловленные наличием на подстанции ответвления трансформатора с заземленной нейтралью. В дополнение к уставкам, рассчитываемым для ВЛ без ответвлений (см. п. 2.2.1), здесь необходимо дополнительно определять коэффициент коррекции.
Известно [8], что для рассматриваемых ВЛ при ОМП в случае КЗ за местом ответвления необходимо учитывать погрешность измерения. Для ее снижения индикатор ФИС снабжен узлом коррекции погрешности. Применительно к одноцепной ВЛ с ответвлением вычисляется соответствующий коэффициент коррекции Кк, формула для которого имеет вид
Кк = , (3.18)
где, Iф - токи поврежденной фазы соответственно в ответвлении и в месте установки индикатора;
, Iо - токи нулевой последовательности.
Коэффициенты коррекции рассчитываются для максимального и минимального режимов работы энергосистемы, а для настройки индикатора определяется среднее арифметическое значение коэффициента. Если участок линии ответвления имеет протяженность более 20 км, возникает необходимость определения места повреждения на этом участке. В этом случае рассчитываются два коэффициента коррекции по формуле (3.18): один для нормальной схемы работы ВЛ, а другой - для случая, когда участок линии с тупиковой подстанцией принимается в качестве линии ответвления. Для регулировки уставки «Коррекция» используется среднее арифметическое значение расчетных коэффициентов для двух случаев КЗ: на основной части ВЛ и на линии ответвления.
В приложении 2 приведен пример выбора уставок индикатора ФИС для ВЛ с ответвлением.
3.2.2. Измерение тока (напряжения)
При невозможности применения индикаторов ФИС для ОМП ВЛ с ответвлениями целесообразно в ряде случаев использование односторонних измерений тока (напряжения). В основном такие измерения не обеспечивают достаточной точности СМП, поэтому они используются либо при отсутствии по тем или иным причинам средств измерений на одном из концов ВЛ, либо для проверки достоверности основного метода ОМП на основе двусторонних измерений.
Для ВЛ с ответвлениями практически может использоваться только характеристика зависимости тока (напряжения) от места КЗ, как это описано в п. 2.2.2. При этом такая характеристика может быть представлена графически либо в табличной форме. Расчет токов (напряжений) выполняется с помощью ЭВМ.
Использование измерения тока (напряжения) для других способов ОМП, изложенных в п. 2.2.2, применительно к ВЛ с ответвлениями связано с громоздкими расчетами и без ЭВМ не оправдано.
4. ОЦЕНКА ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ МЕСТ ПОВРЕЖДЕНИЯ ВЛ ИЗ-ЗА НЕУЧЕТА ВЛИЯЮЩИХ ФАКТОРОВ
В ряде случаев расчет расстояния до мест КЗ может выполняться без учета отдельных влияющих факторов, что значительно упрощает ОМП и позволяет использовать простейшие вычислительные средства. К таким влияющим факторам относятся: частичная взаимоиндукция электромагнитосвязанных линий, токи ответвительных подстанций, неточность задания сопротивления силовых трансформаторов тупиковых подстанций, неоднородность ВЛ. Однако пренебрежение влияющими факторами приводит к погрешности расчета расстояния, которая иногда может достигать недопустимых значений. Можно считать практически недопустимой погрешность, если при неучете отдельного влияющего фактора она не превышает 2 %. В отдельных случаях это значение может быть принято другим с учетом особенностей работы каждой ВЛ и ее протяженности. Ниже приводятся расчетные формулы для оценки рассматриваемых погрешностей [20, 21].
4.1. Неучет частичной взаимоиндукции
Для линии WI, имеющей частичную взаимоиндукцию с ВЛ WII (см. рис. 2.6, а), погрешность ОМП от неучета этой взаимоиндукции при указанном направлении токов следует определять по формуле
nI = . (4.1)
Аналогично следует определять погрешность и для линии WII.
Применительно к пяти электромагнитосвязанным ВЛ выражение (4.1) преобразовывается:
nI = . (4.2)
При неучете взаимоиндукции с одной из электромагнитосвязанных линий формула (4.1) приобретает вид:
ni = , (4.3)
где - полное сопротивление взаимоиндукции между линией WI и линией Wi (i = II, III, IV, V).
Аналогично следует определять погрешность при повреждении остальных электромагнитосвязанных линий электропередачи.
Из выражения (4.2) видно, что погрешность ОМП зависит от длины участков сближения ВЛ, модуля и знака токов во всех неповрежденных линиях, электромагнитосвязанных с поврежденной. Эти параметры аварийного режима зависят от места короткого замыкания поврежденной линии. Следовательно, погрешность от пренебрежения взаимоиндукцией может принимать как положительное, так и отрицательное значение, а иногда равняться нулю.
В реальной схеме электромагнитосвязанных линий должен выполняться расчет токов КЗ для граничных точек ВЛ в отдельных режимах работы линий и примыкающих сетей. Такими точками являются концы поврежденной ВЛ, начало и конец ее участка сближения. На базе этих расчетов определяется максимальная погрешность. При этом оценку погрешности следует производить как для случая пренебрежения электромагнитным влиянием всех линий, так и отдельных ВЛ. В последнем случае появляется возможность исключения дополнительных измерений. Если расчетная максимальная погрешность не превышает заранее заданного значения (например, 2 %), ею можно пренебречь.
Оценку возможности пренебрежения всеми (четырьмя) или частью электромагнитосвязанных ВЛ при повреждении, например, линии WI следует производить в следующей последовательности.
Определяется погрешность расчета расстояния до мест КЗ во всех граничных точках поврежденной ВЛ при пренебрежении всеми электромагнитосвязанными линиями на основе выражения (4.2).
Из полученных значений погрешности находится максимальное значение; если оно не превышает 2 % длины поврежденной ВЛ, расчет на этом заканчивается. (Такой погрешностью можно пренебречь, что позволяет определять место повреждения без учета электромагнитного влияния всех неповрежденных ВЛ).
Если по данным расчета максимальная погрешность превышает 2 %, то по формуле (4.2) вычисляется погрешность при КЗ в граничных точках поврежденной ВЛ из-за пренебрежения током каждой линии, электромагнитосвязанной с поврежденной, и определяются их максимальные значения погрешности.
На основе данных расчета производится распределение максимальных значений погрешности в порядке их убывания по модулю для обоих знаков (положительного и отрицательного).
Из полученных максимальных значений погрешности определяется их наибольшее значение, и если оно менее 2 %, влиянием соответствующей линии можно пренебречь.
Если погрешность превышает 2 %, то берется следующее по модулю значение максимальной погрешности, которое не должно превышать 2 %, и в расчете расстояния до мест повреждения влиянием соответствующей линии можно пренебречь.
Если наибольшее значение максимальных погрешностей намного меньше 2 %, то определяется сумма максимальных значений погрешности одного знака отдельных линий, которая не должна превышать 2 %. В этом случае можно пренебречь электромагнитным влиянием линий, погрешности которых являются слагаемыми этой суммарной погрешности. Расчет погрешности на этом заканчивается.
Аналогично следует определять погрешность ОМП для других электромагнитосвязанных линий.
В приложении 3 дан пример расчета такой погрешности.
4.2. Неучет токов ответвительных подстанций
Рассматриваются погрешности ОМП при использовании параметров нулевой и обратной последовательностей на основе двусторонних измерений (активным сопротивлением можно пренебречь).
Параметры нулевой последовательности. Для наиболее распространенного случая одноцепной ВЛ с заземленным ответвлением (см. рис. 2.7, в) погрешность ОМП на участке длиной L1, из-за пренебрежения током ответвления будет отрицательной и должна определяться [8] по формуле
n1 = - , (4.4)
где q1 = .
При расчете погрешности для случая повреждения на участке длиной L2 необходимо использовать формулу (4.4), приняв подстанцию Б за начало отсчета расстояния до мест КЗ. Погрешность имеет положительное значение. Значение максимальной погрешности из-за неучета тока ответвления следует определять по упрощенной формуле