3.1.3. Экономические показатели, учитывающиеся в виде коэффициентов функционала модели, характеризуют удельные приведенные затраты по сравниваемым вариантам развития и размещения стационарных и передвижных АБЗ.

3.1.4. К технологическим показателям необходимо отнести удельный расход сырья на производство асфальтобетонной смеси, выход асфальтобетонной смеси, режимные нормативы работы АБЗ. Эти показатели имеют наименьшую погрешность и при оптимизации рассматриваемой системы эти показатели учитывают в виде матрицы условий модели.

3.1.5. По натуральным и экономическим показателям, которые имеют значительную степень погрешности, влияющую на точность оптимального решения задачи, формируется представительный набор реально возможных сочетаний исходных данных [13].

3.1.6. Под набором сочетаний исходных данных понимают множество реализаций будущих условий развития и размещения стационарных и передвижных асфальтобетонных заводов.

3.1.7. Представительный набор сочетаний исходных данных формируют с использованием метода статистических испытаний. При этом значения всех варьируемых коэффициентов функционала и ограничений модели выбирают с помощью датчика случайных чисел на ЭВМ, но с учетом характера изменений этих величин. Например, если искомая непрерывная величина показателя находится в пределах от А до В, т.е. задан только диапазон применения случайной величины (минимум и максимум возможного значения), то принимается равномерный закон распределения на отрезке А, В.

Если наряду с диапазоном изменения известна предпочтительность (большая вероятность) каких-то значений случайной величины, то (согласно принципу максимума энтропии [8]) гипотезой о виде закона является либо бета-распределение с положительной или отрицательной асимметрией, когда наиболее вероятное значение величины располагается в первой или последней трети интервала ее изменения, либо нормальное (симметричное бета-распределение) - при попадании наиболее вероятного значения величины в середину диапазона возможных значений.

3.1.8. При достаточно большом числе сочетаний исходных данных формируется весь диапазон возможных значений каждой отдельной компоненты исходных данных.

3.1.9. Полученную методом статических испытаний совокупность сочетаний исходных данных, для сокращения времени дальнейших расчетов на ЭВМ с помощью метода распознавания образцов (таксономии) необходимо заменить меньшей по объему совокупностью. С этой целью полученная статистическим путем совокупность случайных сочетаний исходных данных М «рассортировывается» по заданному числу N однородных групп.

Для этого каждое сочетание интерпретируется как точка в многомерном пространстве, координаты которой определяются случайными значениями коэффициентов функционала модели и вектора ограничений [4].

Метод основан на предложении, что однородным сочетаниям соответствуют близкие точки в пространстве.

В качестве меры близости (dm, m') между двумя случайными сочетаниями (Рm, Pm') в алгоритме распознавания используют евклидово расстояние между двумя точками в одномерном пространстве

                                  (3.1)

где  - численные значения к-й координаты (признака) случайных сочетаний;

lk - нормирующий (весовой) коэффициент k-го признака.

Итеративный процесс группировки осуществляется таким образом, чтобы мера близости (расстояние) между сочетаниями, принадлежащими разным группам, была максимальной, а между сочетаниями внутри групп - минимальной.

3.1.10. Алгоритм распознавания образов в задаче группировки случайных векторов в заданное количество групп выглядит следующим образом. Предположим, что первые N случайных сочетаний исходного множества М образуют центры искомых групп.

Используя меру связи (3.1), определяют матрицу Д(N) = ||dm, m'|| взаимных расстояний между центрами групп. Матрица Д(N) размерности NN (по числу групп), симметричная с нулевыми диагональными элементами.

Пусть имеем сочетания РN + 1, РN + 2, ..., Рм, тогда

1. Определим минимальный элемент матрицы Д(N). Пусть

2. Для сочетания (вектора) РN + 1 определим меру связи с каждым из N сочетаний - центров групп, т.е. найдем вектор

3. Определим наименьшее расстояние

а) если  то сочетания Рk, РN + 1 образуют группу Еk.

В качестве центра группы берут сочетание Р, а также запоминают число элементов (hk) в группе Еk, равное 2. На вход поступает сочетание РN + 2. Управление передается в п. 2;

б) если , то группу  образуют сочетания , . В качестве центра группы принимают сочетание . На месте  запоминают РN + 1, а также фиксируют , равное 2. Производится корректировка матрицы Д(N), на вход поступает следующее по порядку сочетание. Управление передается в п. 1.

На последующих шагах возможно объединить две найденные ранее группы Ер,  (hp, hk ³ 2) в одну. Если hk > hp, то в качестве центра объединенной группы принимают представитель группы Еk, и наоборот. Этим достигают смещение центров в группы с наибольшим числом элементов.

В результате группировки выявляют N характерные сочетания исходных данных, обладающие тем свойством, что они равномерно рассредоточены на исходном множестве М. Полученные таким способом случайные сочетания исходных данных N рассматривают как возможные условия процесса развития и размещения стационарных и передвижных АБЗ. Данный набор случайных сочетаний исходных данных N является имитацией множества возможных условий развития системы. Получение набора N оптимальных решений - дальнейший этап процесса оптимизации развития и размещения стационарных и передвижных АБЗ.

3.2. Принятие решений при перспективном планировании развития и размещения стационарных и передвижных АБЗ

3.2.1. После выбора представительного множества N условий развития и размещения стационарных и передвижных АБЗ методами статистических испытаний и распознавания образов по детерминированной двууровневой модели (2.1) - (2.10) на ЭВМ находят для каждого условия оптимальное решение в соответствии с алгоритмом, описанным в п. 2.2.

3.2.2. Полученные в результате расчетов значения функционалов сводятся в диагональную матрицу, строки которой оптимальные варианты, а столбцы - сочетания исходных данных.

3.2.3. На основе диагональной матрицы значений функционалов для имитации реального процесса приспособления каждого варианта размещения и развития стационарных и передвижных АБЗ к различным условиям по формуле (3.2) формируется матрица суммарных затрат на развитие и адаптацию системы (табл. 3.1).

                                                             (3.2)

где  - вектор экономико-математических оценок варианта;

Bn - вектор ограничений (сочетания условий).

Полученная матрица суммарных затрат позволяет перейти к заключительному этапу оптимизации развития и размещения АБЗ в условиях неопределенности (неоднозначности информации) - определению показателей экономического риска и выбору лучшего варианта развития системы.

3.2.4. Показатели экономического риска характеризуют дополнительные затраты, которые имеют в данных условиях рассматриваемый вариант по сравнению с вариантом, оптимальным при тех же условиях. Существование таких показателей обусловлено тем, что каждый вариант развития и размещения асфальтобетонных заводов оптимален лишь при определенных условиях, а в остальных случаях дает перерасход затрат по сравнению с другими вариантами.

В общем виде показатели затрат экономического риска вычисляют по матрице суммарных затрат. При каждом сочетании исходных данных (т.е. по столбцу матрицы) определяют минимальное значение затрат, которым является значение функционала  варианта rn, оптимального при этом сочетании.

Найденную величину вычитают последовательно из всех элементов рассматриваемого столбца матрицы суммарных затрат. В результате определяют элементы новой матрицы - матрицы экономического ущерба (риска) (табл. 3.2).

Элементы матрицы экономического риска складываются из двух составляющих - экономии или перерасхода затрат на приспособление данного варианта к рассматриваемым условиям () и положительной или отрицательной разности функционалов данного варианта и варианта, оптимального в рассматриваемых условиях. Эти элементы определяют по формуле

                                      (3.3)

Матрица суммарных затрат на развитие и адаптацию системы

Таблица 3.1

Оптимальные варианты

Сочетание исходных данных

В1

В2

...

Вn

...

ВN

X1

...

...

= З - Ф

X2

 

...

...

...

...

...

...

...

...

Xr

...

...

...

...

...

...

....

...

...

XR

...

...

Матрица значений экономического ущерба

Таблица 3.2

Оптимальные варианты

Сочетания исходных данных

В1

В2

...

Вn

...

ВN

X1

0

=

...

 

X2

0

...

...

...

 

...

...

...

...

...

X

...

0

...

...

 

...

...

...

...

...

X

...

...

0

В целом все элементы матрицы рисков неотрицательны ( 0) по самому способу их вычисления.

Указанными преобразованиями, таким образом, в каждом столбце матрицы суммарных затрат элиминируется та минимальная составляющая затрат , которая обусловлена спецификой соответствующего сочетания исходных данных.

3.2.5. Матрица экономического ущерба содержит принципиально новую информацию о поведении данной экономической системы в условиях неопределенности, и представляет собой обобщенную характеристику возможных экономических последствий от незнания будущих условий развития и размещения стационарных и передвижных АБЗ. Она является основой для сравнения вариантов развития и размещения АБЗ в условиях неопределенности.

3.2.6. Сформированная матрица значений экономического ущерба подвергается анализу с применением следующих критериев принятия решений:

                                                       (3.4)

критерий Лапласа, по которому выбирается вариант, имеющий наименьшее среднее значение экономического ущерба;

критерий Сэвиджа (минимального риска);

модифицированный критерий Гурвица.

3.2.7. Применение критериев теории принятия решений позволит получить из множества решений о развитии и размещении стационарных и передвижных АБЗ компактную группу оптимальных, практически равноэкономичных вариантов, которые являются результатом решения данной задачи формальными методами.

3.2.8. Из группы оптимальных равноэкономичных вариантов единственный реализуемый вариант выбирают с привлечением не поддающихся формализации факторов и неэкономических соображений, но с учетом соответствующих величин экономического ущерба.

4. ОПТИМИЗАЦИЯ РАЗВИТИЯ И РАЗМЕЩЕНИЯ СТАЦИОНАРНЫХ И ПЕРЕДВИЖНЫХ АБЗ МИНАВТОДОРА РСФСР В МОСКОВСКОЙ ОБЛАСТИ НА 1981 - 1985 ГОДЫ

4.1. В настоящее время в Московской обл. действуют 50 стационарных асфальтобетонных заводов Минавтодора РСФСР, из которых 30 АБЗ принадлежат Мосавтодору и 20 - объединению «Росавтомагистраль»1). Передвижных АБЗ на территории области нет (рис. 2).

1) Данные на 1.01.1979.

4.2. Асфальтобетонные заводы Минавтодора РСФСР размещены в большинстве районов Московской обл. Причем в 12 районах дислоцируются 2 и более АБЗ.

4.3. Суммарная мощность действующих АБЗ на 1.01.79 равна 2509,2 тыс. т в год. Произведено асфальтобетонной смеси за 1978 г. 1587,7 тыс. т. Недоиспользование производственных мощностей составило около 38 %. Из общего количества асфальтосмесителей, которыми оснащены действующие АБЗ Минавтодора РСФСР в Московской обл. 44 % составляют устаревшие МГ и Г-1. Этими малоэффективными смесителями произведено около 29 % асфальтобетонной смеси, выпущенной в 1978 г. в Московской обл.

4.4. Цель задачи оптимизации развития и размещения стационарных и передвижных АБЗ Минавтодора в Московской обл. на 1981 - 1985 гг. - построение перспективного плана размещения и развития стационарных и передвижных предприятий, построение рациональной схемы прикрепления АБЗ к поставщикам сырья при минимальных суммарных приведенных затратах на производство, транспортировку асфальтобетонной смеси и сырья для ее производства в условиях однозначно заданной исходной информации.