2.22. При проектировании двухступенчатых бескомпрессорных систем кондиционирования воздуха необходимо предусматривать следующие схемы автоматического регулирования температуры воздуха в обслуживаемых помещениях в теплый период года:

а) двухпозиционное регулирование расходов воды в контурах циркуляции оросительных камер БК и МК (рис. 7);

б) пропорциональное регулирование расхода воды в контуре циркуляции оросительной камеры МК (рис. 8) и двухпозиционное регулирование расхода воды в контуре циркуляции оросительной камеры БК.

2.23. В случае применения схемы регулирования, приведенной на рис. 7, при понижении температуры воздуха в помещении ниже расчетной вначале следует предусматривать выключение насоса в контуре циркуляции оросительной камеры БК, а затем насоса в контуре циркуляции камеры МК.

Рис. 6. Принципиальная схема обвязки теплообменников (см. пп. 2.7 и 2.8)

а - теплообменников I и III из калориферов типа КВБ; б - теплообменников I и III из калориферов типа К4ВП или из типовых секций кондиционеров К-30 и Кт-40; в - теплообменника II из калориферов типа К4ВП, КВБ или из типовых секций кондиционеров типа Кт-60 и Кт-80; 1 - трубопровод холодной воды от камеры орошения; 2 - трубопровод отепленной воды к камере орошения; 3 - кран для удаления воздуха; 4 - трубопровод горячей воды из теплосети; 5 - трубопровод обратной воды в теплосеть; 6 - кран для спуска воды; 7 - охлаждаемый поток воздуха

Рис. 7. Принципиальная схема двухпозиционного регулирования бескомпрессорной системы кондиционирования воздуха

I, II, III - теплообменники (воздухоохладители); IV, V - соответственно вентиляторы испарительного и приточного кондиционеров; VI - датчик температуры воздуха в помещении; МК, БК - соответственно оросительные камеры малого и большого контуров циркуляции; VII - наружный воздух; VIII - рециркуляционный воздух; IX - выброс в атмосферу воздуха в теплый период года; Х - приточный кондиционер; XI - испарительный кондиционер

Рис. 8. Принципиальные схемы автоматизации малого контура циркуляции бескомпрессорной системы кондиционирования воздуха

а - схема с клапаном на перемычке; б - схема с двумя взаимообратными клапанами; МК - оросительная камера малого контура циркуляции воды; I - датчик температур воздуха в помещении; II - теплообменник (воздухоохладитель)

При повышении температуры воздуха в помещении включение указанных насосов следует предусматривать в обратном порядке.

2.24. Пропорциональное регулирование расхода холодной воды в теплообменнике II следует предусматривать при постоянном ее расходе в оросительной камере МК по одной из следующих схем:

с клапаном расхода воды на перемычке;

с трехходовым клапаном;

с двумя взаимообратными клапанами.

2.25. Допускается применение пропорционального регулирования расхода воды в контуре циркуляции оросительной камеры БК. Кроме того, допускается при понижении температуры в помещении ниже расчетной предусматривать отключение теплообменника III. При дальнейшем понижении температуры в помещении следует предусматривать отключение насоса в контуре циркуляции оросительной камеры БК.

2.26. При проектировании двухступенчатых бескомпрессорных систем кондиционирования воздуха по схеме на рис. 2, в контуре циркуляции воды оросительной камеры МК должны быть установлены регуляторы давления «до себя».

2.27. При выполнении требований п. 2.6 настоящей Инструкции схема автоматического регулирования параметров воздуха в обслуживаемых помещениях в холодный и переходный периоды года (при работе испарительного кондиционера по схеме на рис. 1) аналогична типовым схемам обычных центральных кондиционеров, разработанным ГПИ Сантехпроект.

ПРИЛОЖЕНИЕ 1

ПРИНЦИП РАБОТЫ ДВУХСТУПЕНЧАТОЙ БЕСКОМПРЕССОРНОЙ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

1. Двухступенчатая бескомпрессорная система кондиционирования воздуха (БСКВ) состоит из двух самостоятельных кондиционеров - приточного и испарительного (рис. 1), связанных между собой контурами циркуляции воды.

2. Приточный кондиционер БСКВ (рис. 1) состоит из следующих основных элементов:

поверхностного теплообменника I;

поверхностного теплообменника II;

вентилятора V.

Испарительный кондиционер (рис. 1) состоит из следующих основных элементов:

поверхностного теплообменника III;

оросительной камеры МК;

оросительной камеры БК;

вентилятора IV.

3. В БСКВ имеются два самостоятельных контура циркуляции воды, рис. 1:

контур циркуляции оросительной камеры МК (малый контур), включающий теплообменник II, оросительную камеру МК и циркуляционный насос VI;

контур циркуляции оросительной камеры БК (большой контур), включающий параллельно соединенные по холодоносителю теплообменники I и III, оросительную камеру БК и циркуляционный насос VII.

4. В теплый период года тепло приточного воздуха отводится к воде, циркулирующей в теплообменниках I и II.

Охлаждение воды, нагретой в теплообменниках I и III, осуществляется в оросительной камере БК большого контура циркуляции воды. Охлаждение воды, нагретой в теплообменнике II, осуществляется в оросительной камере МК малого контура циркуляции воды.

5. В двухступенчатой бескомпрессорной системе кондиционирования воздуха осуществляется перенос энергии в виде тепла от источника с более низким теплосодержанием (от наружного воздуха в приточном кондиционере) к источнику с более высоким теплосодержанием (к вспомогательному потоку воздуха в испарительном кондиционере).

В результате затраты внешней энергии потенциал тепла, отведенного от приточного воздуха повышается.

6. Для обеспечения большей степени охлаждения приточного воздуха в БСКВ предусматривается:

а) предварительное охлаждение вспомогательного потока воздуха в испарительном кондиционере, что позволяет снизить температуру его предела охлаждения и получить более холодную воду;

б) два самостоятельных контура циркуляции воды, позволяющие увеличить количество воды, циркулирующей в каждом контуре, что обусловливает ее небольшой подогрев в теплообменниках и простые условия оборотного охлаждения в оросительных камерах; разделить температурные условия работы каждого контура циркуляции воды. В малом контуре циркулирует вода более низкой температуры, чем в большом контуре;

Рис. 9. Схема процессов обработки воздуха в БСКВ на J - d-диаграмме

в) использование в оросительной камере БК, предназначенной для охлаждения воды, циркулирующей в теплообменниках I и III, вспомогательного потока воздуха (в состоянии близком к насыщению) после оросительной камеры МК.

7. Процесс обработки воздуха в БСКВ в теплый период года представлен в I - d-диаграмме на рис. 9, где точки (арабские цифры), характеризующие состояние воздуха до и после теплообменных аппаратов, совпадают с обозначениями на рис. 1.

Линии на рис. 9 для приточного кондиционера обозначают следующие процессы:

1-2 - нагревание воздуха в вентиляторе V;

2-3 - охлаждение воздуха в теплообменнике I;

3-4 - охлаждение воздуха в теплообменнике II;

9-10 - нагревание воды в теплообменнике II;

4-13 - изменение состояния приточного воздуха в помещении.

Линии на рис. 9 для испарительного кондиционера обозначают следующие процессы:

5-6 - охлаждение воздуха в теплообменнике III;

6-7 - повышение теплосодержания в камере МК;

7-8 - повышение теплосодержания в камере БК;

11-12 - нагревание воды в теплообменниках I и III;

12-11 - охлаждение воды в оросительной камере БК.

8. В зимний и переходный периоды года испарительный кондиционер (рис. 1) согласно требованиям п. 2.6 настоящей Инструкции обеспечивает нагревание приточного воздуха в теплообменниках первого и второго подогрева и адиабатическое увлажнение воздуха в оросительной камере МК.

9. При работе БСКВ соблюдаются следующие уравнения теплового баланса:

а) количество тепла, отнятого от наружного воздуха в приточном кондиционере, равняется количеству тепла, переданного воздуху в испарительном кондиционере. При равных количествах воздуха в приточном и испарительном кондиционерах общее понижение теплосодержания воздуха I в приточном кондиционере равняется общему повышению теплосодержания воздуха в испарительном кондиционере (рис. 9)

??Iпр = I2 - I4 = Iисп = I8 - I5;                                              (1)

б) количество тепла, отнятого от воздуха в теплообменнике II, равняется количеству тепла, переданного воздуху в камере МК

                                  (2)

в) количество тепла, отнятого от воздуха в I и III теплообменниках, равняется количеству тепла, переданного воздуху в оросительной камере БК,

II - IIII = (I2 - I3) + (I5 - I6) = IБК = I8 - I7                                  (3)

ПРИЛОЖЕНИЕ 2

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ ДВУХСТУПЕНЧАТЫХ БЕСКОМПРЕССОРНЫХ СИСТЕМ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

1. С целью предварительного определения воздухообменов при проектировании БСКВ температуру подаваемого в помещение воздуха в летний период года после приточного кондиционера следует принимать:

а) при работе приточного и испарительного кондиционеров на наружном воздухе - равную температуре мокрого термометра наружного воздуха;

б) при работе приточного кондиционера на наружном, а испарительного кондиционера на вытяжном воздухе (или на смеси наружного с вытяжным воздухом) - равную температуре мокрого термометра вытяжного воздуха (или смеси наружного с вытяжным воздухом).

Окончательная температура приточного воздуха определяется расчетом.

2. Процессы тепло и влагообмена, происходящие в поверхностных теплообменниках и оросительных камерах двухступенчатой бескомпрессорной системы кондиционирования воздуха, а также конечная температура охлаждения приточного воздуха определяются:

а) начальными параметрами воздуха, поступающего в приточный и испарительный кондиционеры. В общем случае эти параметры могут быть неодинаковыми.

б) соотношением количества воздуха, поступающего в приточный (основной поток) и испарительный (вспомогательный поток) кондиционеры;

в) конструктивными и гидродинамическими характеристиками системы. К ним относятся:

поверхности охлаждения теплообменников I, II и III, которые характеризуются критерием глубины ;

критерии живых сечений теплообменников , определяющие при данной скорости воды в трубках теплообменников отношения водяных эквивалентов теплообменивающихся сред;

конструктивные характеристики теплообменников (характер оребрения труб) и оросительных камер (тип центробежных форсунок, число рядов и т.д.);

коэффициенты орошения В в оросительных камерах малого и большого контуров циркуляции воды, соотношения количеств воды, циркулирующей в I, II и III теплообменниках.

3. Производительность по воздуху приточного и испарительного кондиционеров БСКВ, проектируемых по схемам рис. 1 и 2, следует определять в соответствии с требованиями пп. 2.2 и 2.16 настоящей Инструкции.

4. Расчет БСКВ заключается в расчете и увязке совместной работы приточного и испарительного кондиционеров (см. рис. 1), связанных друг с другом большим и малым контурами циркуляции воды.

5. Специфика расчета каждого контура циркуляции воды БСКВ заключается в увязке совместной работы поверхностного теплообменника и оросительной камеры.

Подобрав теплообменник, охлаждающий приточный воздух до требуемой температуры, необходимо рассчитать оросительную камеру (определить коэффициент орошения и количество охлаждающего воздуха), способную обеспечить охлаждение воды, циркулирующей в теплообменнике, от конечной температуры отепленной воды до той температуры, с которой вода должна входить в теплообменник.

6. Специфика расчета БСКВ состоит в том, что расчет малого контура циркуляции зависит от условий работы большого контура циркуляции (т.е. от параметров воздуха после теплообменников I и III). В свою очередь, расчет большого контура циркуляции зависит от параметров воздуха после камеры орошения малого контура циркуляции (см. рис. 1).

7. Расчет БСКВ следует проводить с помощью графоаналитического метода, аналитического метода расчета, программ для ЭВМ «Росинка-22» и «Росинка-24», позволяющих решать прямые и обратные задачи.

Графоаналитический метод расчета

8. Графоаналитический метод дает возможность точно рассчитать в соответствии с требованиями раздела 2 настоящей Инструкции конечные параметры охлажденного воздуха после приточного кондиционера и конечные параметры воздуха, выходящего из испарительного кондиционера.

Промежуточные параметры воздуха после I и III теплообменников, а также параметры воздуха после оросительной камеры МК и температуры воды в малом и большом контурах циркуляции воды вычисляются с некоторым приближением.

9. Интегральные процессы тепло- и влагообмена, происходящие в БСКВ при различных начальных параметрах воздуха в приточном и испарительном кондиционерах, описываются следующим критериальным уравнением:

где  - относительное изменение температуры воздуха;

 - температурный критерий, учитывающий начальные параметры воздуха в системе;

tc2 и tc4 - температура воздуха по сухому термометру до и после приточного кондиционера (рис. 9);

tри и tми - температура точки росы и температура по мокрому термометру воздуха, поступающего в испарительный кондиционер (рис. 9);

Rс = 1+2,34а - критерий, учитывающий влияние влагообмена на теплообмен;

 - коэффициент пропорциональности, мм рт. ст./град.;

Рри и Рми - парциальные давления водяного пара в состоянии насыщения соответственно при температурах tри и tми, мм рт. ст.

10. Уравнения, по которым следует выполнять интегральные расчеты БСКВ, проектируемых по схемам на рис. 1 и 2 из типовых секций КТ при равных номинальных производительностях по воздуху приточных и испарительных кондиционеров, приведены в табл. 1.

Пределы применимости расчетных уравнений даны в табл. 2. С помощью каждого уравнения в табл. 1 могут быть рассчитаны БСКВ различной производительности по воздуху в пределах типового ряда кондиционеров, а именно 30, 40, 60, 80, 120, 160 и 240 тыс. м3/ч, и при различных или одинаковых начальных параметрах воздуха, поступающего как в приточный, так и в испарительный кондиционеры (см. табл. 2 и п. 1.3 настоящей Инструкции).