15. Сверху укладывается плашмя красный кирпич на цементной стяжке на ширину обогреваемой полосы с перекрытием на 200 мм. Сверху поверхность кирпичного пола заливается цементной стяжкой и выравнивается, выдерживая уклон 1:50 (i = 0,02) к полосе дефекации.

Схема укладки всех слоев на обогреваемой полосе показана на рис. 14.

Рис. 14. Поперечный разрез обогреваемой полосы пола:

кирпич красный; бетон 200; сетка-экран; бетон 200; нагревательный провод; теплоизоляция; песок сухой; гидроизоляция; бетонная стяжка; уплотненный грунт с гравием

Данная схема укладки слоев пола рекомендуется для свиноводческих помещений. Для других видов животных и птицы укладка кирпича не обязательна. Поэтому достаточно слой бетона над сеткой увеличить до 50 - 80 мм и хорошо зашпаклевать цементным раствором.

Для подвода питания к проволочным нагревателям и осуществления контроля электрических соединений поперек помещения строят шинные каналы. Каналы, где находятся фазные шины, к которым подключены питающие кабели, называются фазными. Каналы, в которых находятся только нулевые шины и к которым присоединены проволоки всех трех фаз, называются нулевыми.

Расположение фазных и нулевых каналов в помещении зависит от схемы электрообогрева участков пола и схема укладки нагревательной проволоки на обогреваемых полосах пола. Допускается расположение фазных и нулевых шин в одном шинном канале. Варианты расположения шинных каналов показаны на рис. 3 и 5.

В тех местах, где шинные каналы проходят под навозоуборочным транспортером, укладывается необходимое количество асбоцементных труб диаметром 100 мм, при этом через одну трубу можно пропускать не более одного кабеля или шины (или несколько соединительных проводников, соединяющих участки экранной сетки).

Недопустимо в одной трубе пропускать шину и соединительные проводники экранной сетки. Сетка-экран не должна касаться нулевой шины.

Шинные каналы под навозоуборочным транспортером герметизируются для предотвращения проникновению влаги и испарений. Пример устройства шинного канала показан на рис. 15. Нулевую шину, если она находится в отдельном нулевом шинном канале, после присоединения к ней всех проводок герметично закрываются съемными крышками, как и фазные шинные каналы.

Рис. 15. Поперечный разрез шинного канала:

1 - нулевая шина; 2 - питающие кабели; 3 - фазная шина; 4 - нагревательная проволока; 5 - деревянный брусок; 6 - герметизация (битум или цементный раствор); 7 - крышка (доска или бетонная плита)

Силовые кабели от трансформатора обогрева вне помещения прокладываются в земле, а внутри помещения - в фазных шинных каналах. Присоединение жил кабеля к фазным шинам осуществляется с помощью болтовых соединений. Место присоединения кабеля должно быть в средней точке шины для равномерного токораспределения по шине (рис. 16).

Рис. 16. Схема соединения фазной шины с электрическим кабелем:

1 - фазная шина; 2 - электрический кабель; 3 - кабельный наконечник; 4 - болтовое соединение; 5 - сталь листовая (сечение 5×100 мм)

В фазном шинном канале питающие кабели и все находящиеся в нем фазные шины должны укладываться на сухие деревянные бруски, расстояние между шинами и кабелями должно быть не менее 100 мм.

ЗАЗЕМЛЕНИЕ И ВЫРАВНИВАНИЕ ПОТЕНЦИАЛОВ

Сетка-экран изготавливается из проволоки диаметром 2 - 6 мм. Можно применить плетеную сетку, но по периметру и поперек обогреваемой полосы через каждый метр к ней приваривается проволока диаметром 2 - 6 мм, а также стандартная сетка ГОСТ 8478-66. Все возможные конструкции экранных сеток показаны на рис. 17 [7, 8]. Сетка-экран выполняет только функцию выравнивания потенциалов на обогреваемой поверхности пола. Для уменьшения напряжения прикосновения по наружному контуру помещения устраивается дополнительное искусственное заземление сопротивлением 10 Ом [8, 9], к которому надежно присоединяется сетка-экран.

Рис. 17. Проволочные сетки для экранирования:

а - стандартная сварная сетка ГОСТ 8478-66; б - сетка, изготовленная на месте (диаметр проволоки 2,5 мм); в - плетеная сетка с приваренной к ней поперек и по контуру отрезками проволоки

В качестве заземляющих рекомендуется применять оголенные стальные проводники. Наименьшие размеры стальных заземлителей и заземляющих проводников указаны в табл. 6 [10].

Таблица 6

Наименьшие размеры стальных заземлителей и заземляющих проводников

Профиль

Размеры, мм

в здании

в наружных установках

в земле

Круглый диаметр

5

6

6

Прямоугольный:

 

 

 

сечение, мм2

24

48

48

толщина

3

4

4

Угловая сталь, толщина полок

2

2,5

4

Газопроводные трубы, толщина стенок

2,5

2,5

3,5

Тонкостенные трубы, толщина стенок

1,5

Не допускается

В качестве заземляющих можно применять и проводники из цветных металлов, но оголенные алюминиевые проводники нельзя прокладывать в земле, потому что они быстро коррозируют. Каждый заземляемый элемент установки присоединяется к заземляющей магистрали отдельным проводником. Нельзя включать последовательно несколько заземляющих частей в заземляющий проводник.

Заземляющие проводники необходимо защищать от коррозии. Сопротивление одного электрода в виде круглого стержня, заглубленного вертикально вровень с поверхностью земли, определяется по формуле [10]

где l и d - длина и диаметр стержня, мм;

ρ - удельное сопротивление грунта, то есть сопротивление куба грунта со стороной 1 м, Ом · м.

По этой формуле приближенно можно определить сопротивление растеканию от стержня из угловой стали, подставляя d = 0,95 B; (B - ширина полки уголка в метрах), а также от стержня, у которого верхний конец находится ниже поверхности земли на глубине до 0,8 м.

Точное сопротивление растекания от стержня, определяется по формуле [10]

где tc - расстояние от поверхности земли до середины стержня, м.

Сопротивление заземления горизонтальной полосы длиной l (м) и шириной b (м), расположенной на глубине tп (м) от поверхности земли, определяется по формуле [10]

Этой же формулой можно пользоваться при горизонтальном заземлителе из круглой стали, подставляя b = 2 · d.

Для определения значения удельного сопротивления грунта, приведенного в литературе [10], пользуются укрупненным расчетом. Поэтому не всегда можно получить точный результат, несмотря на использование точных формул для сопротивления заземлителя. Допустимо при ориентировочных расчетах находить сопротивление одиночного заземлителя любой конструкции, расположенного в однородном грунте, по упрощенной формуле [10]

где l - длина стержня, полосы, стороны квадратной пластины или эквивалентная ей величина; если пластина другой формы, сетка или контур площадью S, то , м;

c - коэффициент, равный 0,9 или 1 для стержня, 2,0 - 2,1 для горизонтальной полосы, 0,25 для вертикально расположенной пластины.

Если в сложном заземляющем устройстве отдельные стержни расположены друг от друга на расстоянии 40 м, то они взаимно не влияют на протекающие через них токи, и сопротивление всех стержней заземляющего контура определяется по формуле

где Rc - сопротивление одного стержня, Ом;

n - число стержней.

Обычно расстояние между стержнями по величине близко к их длине. Они взаимно экранируют друг друга и несколько затрудняют растекание тока в земле. Эквивалентное сопротивление стержневых заземлителей определяется по формуле [10]

где η - коэффициент использования стержневого заземлителя.

Величина η зависит от отношения расстояния между стержнями к длине стержня a / l, количества стержней и расположения их в ряд или по контуру (рис. 18).

Рис. 18. Графики для определения коэффициентов использования стержневых зазёмлителей при расположении стержней в ряд (а) или по контуру (б)

Эквивалентное сопротивление соединительных полос вследствие экранирования их стержнями определяется по формуле [10]

где ηп - коэффициент использования соединительных полос. Определяется по графику на рис. 19.

Рис. 19. Графики для определения коэффициентов использования полосы связи в ряду стержневых заземлителей (а) или в контуре стержневых заземлителей (б)

Результирующее сопротивление заземлителя, состоящего из стержней и соединенных полос, определяют по формуле параллельного соединения сопротивлений

Удельное сопротивление грунта зависит от его состава (структуры, наличия солей) и влажности. В табл. 7 приведены рекомендуемые для предварительных расчетов значения удельного сопротивления различных грунтов [10].

Таблица 7

Удельное сопротивление грунтов для предварительных расчетов

Наименование

ρ, Ом · м

Каменистый грунт (граниты, гнейсы)

700 - 106

Каменистый грунт (сланец глинистый, известняк, ракушечник)

100 - 1000

Песок при залегании грунтовых вод

 

глубже 5 м

1000

То же, до 5 м

500

Мергели известковистые, супесь слабовлажная

300

Лесс

250

Почва, (чернозем и др.)

200

Супесь влажная, мергель

150

Суглинок полутвердый или лессовидный, алевролиты

100

Мел или глина полутвердая

60

Слайды графитовые, аргиллиты или мергель глинистый

50

Супесь водонасыщенная

40

Суглинок пластичный

30

Торф, глина пластичная

20

Вода равнинной реки

50

Подземные водоносные слои (в зависимости от минерализации)

5 - 50

Морская вода

1

При промерзании почвы удельное сопротивление ρ увеличивается. Поэтому стержневые заземлители рекомендуется забивать на глубину большую, чем глубина промерзания почвы, и по возможности ниже низшего уровня грунтовых вод. Но поскольку значительная часть стержней длиной 3 м лежит в зоне, где ρ подвержено сезонным колебаниям, при проектировании заземляющего устройства в приведенные выше формулы подставляют расчетное значение удельного сопротивления грунта ρр = Kc · ρ, где K - коэффициент сезона, позволяющий приближенно учесть возможное увеличение ρ при промерзании почвы. Коэффициент сезона Kc = 4,5 - 7,0 для протяженных горизонтальных заземлителей (соединительные полосы) на глубине 0,8 м. Kc = 1,8 - 2,0 для вертикальных стержней 2 - 3 м при глубине заложения вершины 0,5 - 0,8 м. Kc = 1,35 для вертикальных стержней длиной 5 м и глубине заложения вершины 0,7 - 0,8 м [10].

Стержневые заземлители рекомендуется выбирать длиной не менее 3,5 м.

Заземляющее устройство рекомендуется выполнять в виде замкнутого контура по наружному периметру животноводческого помещения на расстоянии не менее 1 м от стены помещения.

Через каждые 10 м его необходимо соединять с экранной сеткой, уложенной на обогреваемой площади внутри помещения (см. рис. 4), что способствует лучшему выравниванию потенциала на обогреваемой площади, а также уменьшению сопротивления заземляющего устройства. В случае необеспечения требуемого условия Rз.э ≤ 10 Ом спроектировать и произвести расчет заземления другим способом.

Контроль и проверка заземляющих устройств осуществляется различными методами и приборами МС-07, МС-08, М-372, ММВ, УМВ и М-416.

Методика проведения замеров приводится в прилагающейся к приборам технической документации, можно найти ее в любой справочной литературе по технике безопасности и охране труда на электроустановках.

Замер сопротивления заземления приводится в зимнее время ежегодно и после капитальных ремонтов или переустройства заземлителей.

При устройстве контура заземления составляется акт на скрытые работы, где приводятся и результаты замеров. Ежегодные замеры отмечаются в акте замеров сопротивления заземления.

ТЕХНИКА БЕЗОПАСНОСТИ И ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ ЭЛЕКТРООБОГРЕВАЕМЫХ ПОЛОВ

Установка с электрообогреваемым полом должна выполняться в соответствии с указаниями действующих правил устройства электроустановок и техники безопасности при эксплуатации электротехнических установок в сельскохозяйственном производстве.

1. Внимательно проводить укладку нагревательных элементов и сетки-экрана, по правилам устраивать контур заземления и замерять сопротивление заземления.

2. Готовый пол должен иметь ровную поверхность с уклоном к полосе дефекации, состояние пола поддерживать, в процессе эксплуатации.

3. Шинные каналы должны быть надежно закрытыми. Запрещается засорять их при ремонтных работах.

4. Не допускается попадание дождя или снега на трансформатор обогрева, для чего над ним устраивать навесы.

5. Щит управления должен устанавливаться в сухом подсобном помещении, отделенном сплошными стенами от помещения, в котором содержатся животные.

6. При подготовке трансформатора обогрева для включения в сеть необходимо проверить: техническое состояние заземления, разъемные соединения, подтянув их по мере необходимости, фарфоровые изоляторы, протерев их бензином Б-70 и сухой ветошью, соответствие подключения проводов и кабелей к выводам 49-121 и 380 В (если используется комплектная трансформаторная подстанция КТП-50-0Б или КТП-63-0Б). При обнаружении в фарфоровых изоляторах трещин, сколов, отбитых ребер и других дефектов необходимо заменить поврежденный изолятор.