обосновывается динамическая расчётная схема;

определяются инерционные и жёсткостные характеристики;

определяются круговые частоты ωi или периоды Ti (Ti=2π/ωi) и формы собственных колебаний сооружения;

определяются коэффициенты динамичности βi в зависимости от периода Тi собственных колебаний и коэффициенты формы ηi в зависимости от формы собственных колебаний;

определяются сейсмические нагрузки , перемещения узлов динамической расчётной, схемы и внутренние усилия в элементах конструкции;

осуществляются проверки прочности и устойчивости с учётом сил, входящих, помимо сейсмических сил, в особое сочетание нагрузок.

2. Для динамических расчётных схем с большим числом степеней свободы этапы расчёта, включающие определение частот и форм собственных колебаний, сейсмических сил и внутренних усилий в элементах конструкции, необходимо выполнять с помощью - ЭВМ, используя разработанные для этой цели вычислительные программы («PIRS», «ППП АПЖБК» и др.).

Программа "PIRS" разработана в Дальморниипроекте. Реализует спектральный метод расчёта. Предназначена для определения сейсмических нагрузок, действующих на причальные сооружения эстакадного типа, а также внутренних усилий в свайных опорах и связях, соединяющих секции. Динамическая расчётная схема секции причала представлена в виде жёсткого диска, расположенного на упругих свайных опорах. Варианты предусмотренных динамических расчётных схем: отдельная секция; цепочка соединённых между собой секций.

Пакет прикладных программ для автоматизированного проектирования железобетонных конструкций (ППП АПЖБК или условно "LIRA") надземных и подземных сооружений в промышленном и гражданском строительстве разработан в НИИАСС Госстроя УССР (научно-исследовательский институт автоматизированных систем планирования и управления в строительстве).

Алгоритм прочностного расчёта конструкций основан на методе конечного элемента (МКЭ), для динамических задач используется спектральный метод.

Динамическая расчётная схема представляет собой пространственную конструкцию составленную из конечного числа стержневых и плоских элементов.

ППП выполняет расчёты для всех вариантов схем, перечисленных в разделе 3 настоящего Руководства.

Программа предусматривает возможность расчёта на сочетание различных видов нагрузок.

ПРИЛОЖЕНИЕ 6

(рекомендуемое)

ОСНОВНЫЕ ПОЛОЖЕНИЯ ВЕРОЯТНОСТНОГО РАСЧЁТА ПРИ ОЦЕНКЕ СЕЙСМОСТОЙКОСТИ

1. Настоящее приложение регламентирует порядок выполнения вероятностных расчётов при оценке сейсмостойкости сооружений в соответствии с требованиями п.4.3 Руководства.

2. Алгоритм расчёта, использующий метод статистических испытаний, должен содержать:

статистическое моделирование случайных входных параметров расчёта согласно заданным вероятностным законам;

расчёты частных значений искомых выходных случайных величин согласно принятому методу детерминистического расчёта;

определение средних величин и случайных составляющих посредством статистической обработки их частных значений;

определение выходных случайных величин (искомых величин) с заданной обеспеченностью.

3. Метод линеаризации допускается применять к функции , незначительно отличающейся от линейной в интервале реальных изменений параметров окрестностях средних значений , а также при возможности аппроксимации действительного закона распределения случайных величин нормальным.

Алгоритм определения параметров распределения выходных случайных величин (средних значений и дисперсий) методом линеаризации должен содержать (см. приложение 5):

определение вектора средних значений выходных случайных величин по принятому методу детерминистического расчёта при средних значениях входных случайных величин ;

определение корреляционной матрицы выходных случайных величин , характеризующей их дисперсии, при известной корреляционной матрице входных случайных величин определение выходных случайных величин с заданной обеспеченностью.

Корреляционная матрица выходных случайных величин определяется по формуле

(6.1)

где - корреляционная матрица входных случайных величин;

- матрица коэффициентов влияния центрированных входных случайных величин на выходные, определяемая согласно п.4 настоящего приложения.

4. Матрицы коэффициентов влияния рекомендуется определять в последовательности:

в соответствии с принятым методом детерминистического расчёта, определяются средние значения искомых величин при средних значениях входных случайных величин ;

задаётся малое приращение ΔXj; j-й входной случайной величине в окрестностях её среднего значения и для этого случая определяются значения искомых величин ;

определяются приращения искомых величин обусловленные приращением ΔXj;

вычисляется отношения приращений которые представляют собой матрицу - столбец коэффициентов влияния;

повторяя указанную процедуру для остальных входных случайных величин, определяются остальные матрицы-столбцы коэффициентов влияния. Совокупность матриц-столбцов образует полную матрицу .

Примечания: 1. Приращение входной случайной величине рекомендуется задавать равным её среднеквадратическому отклонению от среднего значения.

2. При использовании спектрального метода матрицы коэффициентов влияния следует определять для результирующих величин, вычисленных с учётом суммирования по всем учитываемым формам колебаний.

5. Расчётные значения выходных случайных величин, подчиняющихся нормальному закону распределения вероятностей, допускается определять по формуле

,(6.2)

где γ - характеристика безопасности, принимаемая в зависимости от требуемой обеспеченности Р искомой величины;

D(Y) - дисперсия выходной случайной величины, определяемая из корреляционной матрицы .

Значения зависимости Р[γ]

P

0,9505

0,9713

0,9772

0,9938

0,9986

0,9999

γ

1,65

1,90

2,00

2,50

3,00

3,70

ПРИЛОЖЕНИЕ 7

(справочное)

ОБОЗНАЧЕНИЯ И РАЗМЕРНОСТИ ВЕЛИЧИН, ИСПОЛЬЗУЕМЫХ В РУКОВОДСТВЕ

А - коэффициент сейсмичности;

ak, bk - расстояния от центра масс к-й секции до ее правого и левого концов, м;

Ck,k+1 - коэффициент жесткости связи, соединяющей к-ю и (k+1)- секции, кН/м;

- коэффициенты жесткости р-й сваи или свайной опоры соответственно при смещении ее в направлении осей x и у, кН/м;

Срφ - коэффициент жесткости р-й сваи или свайоной опоры при повороте ее в горизонтальной плоскости, кН·м;

EJ - жесткость конструкции на изгиб, кН·м2;

е - эксцентриситет, м;

G - центр жесткости свайного поля;

g - ускорение свободного падения м/с;

i - номер формы колебаний (тона) сооружения;

К - номер степени свободы в динамической расчетной схеме или номер узла, в котором сосредоточена масса;

K1 - коэффициент, учитывающий допускаемые повреждения;

- коэффициент диссипации (рассеяния);

коэффициенты жесткости свайного поля секции при представлении плиты в виде жесткого диска, кН/м, кН и кН·м;

Lr - линейный горизонтальный размер секции, м;

L - длина цепочки секции, м;

lp - расчетная длина р-й сваи, м;

М - центр масс плиты;

Мк - масса, отнесенная к к-му узлу, т;

mк - коэффициент инертности дня к-й степени свободы имеет: размерность массы т для свободы перемещений и размерность момента инерции массы т·м2 для свободы поворота;

mp - интенсивность массы р-й сваи с присоединенной к ней водой, т/м;

N - значение внутреннего усилия (Si, mi, Spi, Sk, k+1, i) или обобщенного перемещения Vi, φi, в рассматриваемом сечении или узле от действия сейсмической нагрузки, соответствующей i-му тону колебаний.

n - общее количество: секций, либо свай в секции, либо степеней свободы в динамической расчетной схеме;

ns - количество степеней свободы в динамической расчетной схеме, совпадающих с направлением сейсмического воздействия;

р - номер сваи;

r - текущий номер степени свободы динамической расчетной схемы;

rs - текущий номер свободы перемещения, совпадающего с направлением сейсмического воздействия;

Si - сейсмическая сила, действующая на секцию и приложенная в центре масс секции, кН;

Sкi - сейсмическая нагрузка (сила, или момент), приложенная к точке К, соответствующая i-му тону колебаний;

- проекции усилия на координатные оси x и у возникающего в р-й свае от действия сейсмической нагрузки, кН;

Spφi - крутящий момент в свае, возникающий от действия сейсмической нагрузки, кН·м;

Ti - период собственных колебаний сооружения, с;

Uк - амплитуда перемещений к-й секции в направлении соседней (k+1)-й, м;

V - смещение, м;

ω - круговая частота собственных колебаний сооружения, соответствующая i-му току, с-1;

xki - относительное обобщенное (смещение или поворот) перемещение сооружения в направлении к-й степени свободы при его собственных колебаниях по i-му тону;

xp, yp - координаты р-й сваи относительно центра масс секции (х - в направлении сейсмического воздействия, y - в перпендикулярном направлении), м;

βi - коэффициент динамичности;

Δt - зазор для температурного расширения секций, м;

Δk,k+1 - ширина антисейсмического шва, м;

ηki - коэффициент формы колебаний;

θk - момент инерции массы, отнесенной к к-му узлу, т·м2;

mi - сейсмический момент, действующий на секцию и поворачивающий ее относительно центра масс секции, кН·м;

ν - количество учитываемых в расчетах форм колебаний сооружения;

φ - угол поворота, рад;

ПРИЛОЖЕНИЕ 8

(справочное)

ОПРЕДЕЛЕНИЯ ПРИНЯТЫХ ТЕРМИНОВ И ПОНЯТИЙ

1. Сейсмостойкость - способность сооружений (главным образом их несущих конструкций) противостоять сейсмическим воздействиям, сохраняя свои эксплуатационные качества.

2. Сейсмическое воздействие - подземные удары и колебания земной поверхности, вызванные внутриземными процессами (главным образом тектоническими).

3. Сейсмичность - вероятная интенсивность землетрясения в баллах по шкале ГОСТ 6249-52.

4. Сейсмическое районирование - разделение территории, подверженной землетрясениям, на районы с одинаковой сейсмической опасностью.

5. Сейсмическое микрорайонирование - уточнение сейсмичности на некоторой территории сейсмического района в зависимости от её геологических, и гидрологических условий. Интенсивность землетрясений возрастает с уменьшением плотности грунта, а также с увеличением её обводнённости.

6. Сейсмические нагрузки - силы инерции, возбуждаемые массой сооружения вследствие её колебаний. Сейсмические силы при заданном законе движения основания зависят от динамических характеристик сооружения (распределения его масс и жёсткостей, демпфирования и т.д.).

7. Спектральный метод расчёта - метод, основанный на математической интерпретации перемещения почвы при землетрясении в виде суммарного действия ряда (спектра) затухающих гармонических колебаний.

8. Динамическая расчётная схема - упрощённая схема сооружения, включающая жёсткостные и инерционные элементы, которые позволяет описать условия деформации конструкции и силовых воздействий в виде математических выражений для колебательных процессов.

9. Высотные надстройки - термин, обозначающий в динамических задачах или расчётных схемах краны, вышки, башни, складские сооружения и т.п., расположенные на причале.

10. МКЭ - метод конечных элементов, согласно которому сооружение представляется состоящим из совокупности отдельных элементов конечных размеров, взаимодействующих между собой в конечном числе узловых точек.

11. Акселерограмма реальная - запись ускорения грунта при реальном землетрясении.

12. Акселерограмма синтезированная - акселерограмма, полученная аналитически на основе записи ускорений грунта вблизи фундамента проектируемого сооружения с учётом данных инженерно-геологических изысканий, а также факторов влияния существующих сооружений.

13. Случайная величина - величина, которая принимает различные значения, неизвестные заранее

.(8.2)

14. Среднее значение искомой величины - её среднеарифметическое значение

(8.2)

где xk - частное значение величины;

n - общее количество опытов или статистических наблюдений;

nk - количество опытов или статистических наблюдений, в которых обнаружено значение xk

(8.3)

- относительная частота или эмпирическая вероятность появления величины xk

15. Случайная составляющая искомой величины (центрированная случайная величина) - разность между величиной xk и средним значением искомой величины

.(8.4)

16. Дисперсия случайной величины - среднее значение квадратов случайных составляющих

(8.5)

17. Среднее квадратическое отклонение случайной величины

(8.6)

18. Вероятностный закон распределения случайной величины функция плотности вероятности распределения величины

(8.7)

19. Обеспеченность значения величины - вероятность непревышения (незанижения) случайной величины рассматриваемого значения.

20. Детерминированная величина - вполне определённая величина, без каких-либо случайных отклонений.

21. Детерминистический расчёт - обычный расчёт, в котором участвуют детерминированные величины.

22. Детерминистическое уравнение связи - уравнение или алгоритм расчёта, устанавливающие функциональную связь между входными величинами, используемыми в расчёте, и выходными величинами, определяемыми в результате расчёта.

23. Корреляционная матрица случайных величин - матрица, элементами которой являются дисперсии отдельных случайных величин (диагональные члены матрицы) и смешанные моменты второго порядка, характеризующие статистическую связь (корреляцию) между случайными величинами, используемыми в уравнении связи