Для проверки правильности результатов измерения и повышения точности определения используют стандартные образцы давления насыщенных паров газожидкостной равновесной системы [1].

Порядок применения ГСО указан в свидетельстве на государственные стандартные образцы давления насыщенных паров.

Если разность между результатом, полученным при испытании ГСО, и аттестованной характеристикой, приведенной в свидетельстве на ГСО, превышает абсолютную погрешность, приведенную в свидетельстве, рассчитывают поправочный коэффициент по формуле

,

где Ас.о - аттестованная характеристика стандартного образца, кПа (мм рт. ст.);

Хс.о - результат испытания стандартного образца, кПа (мм рт. ст.).

Для расчета давления насыщенных паров испытуемого нефтепродукта результат испытания умножают на поправочный коэффициент.

Пример

Давление насыщенных паров нефтепродуктов равно 60,92 кПа (457 мм рт. ст.).

Давление насыщенных паров стандартного образца равно 9,99 кПа (75 мм рт. ст.), аттестованная характеристика стандартного образца 11,86 кПа (89 мм рт. ст.).

Для расчета давления насыщенных паров испытуемого нефтепродукта рассчитывают поправочный коэффициент

.

Правильный результат испытания равен

60,92??1,18 = 71,9 кПа (539,4 мм рт. ст.)

Периодичность проверки аппаратов при применении стандартных образцов - один раз в год.

Правильность результатов измерений с использованием стандартных образцов контролируют не реже одного раза в месяц.

17.2 Точность

Точность метода получают путем статистической обработки результатов межлабораторных испытаний.

17.2.1 Сходимость

Разность результатов двух испытаний, полученная одним и тем же оператором, на одном и том же аппарате, при постоянных условиях, на идентичном испытуемом материале в процессе длительной работы при нормальном и правильном выполнении методики испытания может превышать указанные значения только в одном случае из двадцати.

В килопаскалях

Давление

Сходимость

35-110

2,1

17.2.2 Воспроизводимость

Разность двух отдельных и самостоятельных результатов, полученная разными операторами, в различных лабораториях на идентичном испытуемом материале в процессе длительной работы при нормальном и правильном выполнении методики испытаний может превысить указанные значения только в одном случае из двадцати.

В килопаскалях

Давление

Воспроизводимость

35-110

4,9

Примечание - Приведенные точностные характеристики были установлены в 1981 г. совместной исследовательской программой, включающей 25 лабораторий, 12 образцов с пределами насыщенных паров от 5 до 16 psi по Рейду. Для других пределов давления насыщенных паров ранее, в 1950 г., были установлены требования:

Давление, кПа (бар)

Сходимость, кПа

Воспроизводимость, кПа

0-35 (0-0,35)

0,7

2,4

110-180 (1,1-1,8)

2,1

2,8

180 и выше (1,8 и выше)

2,8

2,9

Авиационные бензины 50 (0,5)

0,7

1,0

18 Протокол испытания

Протокол испытания должен включать следующие данные:

а) тип и отождествление испытуемого продукта;

б) ссылку на настоящий стандарт;

в) результат испытания;

г) любые отклонения по соглашению или по другим документам от предписанного метода;

д) точностные данные испытания.

ПРИЛОЖЕНИЕ А

(обязательное)

Аппаратура для определения давления пара по Рейду

А.1 Бомба (для измерения давления насыщенных паров по Рейду)

Бомба состоит из двух камер - воздушной (верхняя) и жидкостной (нижняя) - в соответствии с требованиями А.1.1 - А.1.4.

Примечание - Предостережение. Для сохранения правильного соотношения объемов воздушной и жидкостной камер не следует заменять детали без повторной калибровки.

А.1.1 Воздушная камера

Верхняя секция или воздушная камера (рисунок А.1) представляет собой цилиндрический сосуд внутренним диаметром (51 ± 3) мм и длиной (254 ± 3) мм и слегка наклонными внутренними поверхностями краев, обеспечивающими полное опорожнение сосуда при вертикальном положении. На одном конце воздушной камеры следует предусмотреть переходник измерительного прибора внутренним диаметром не менее 5 мм, чтобы принять 6-мм соединение. На другом конце воздушной камеры следует предусмотреть отверстие диаметром около 13 мм для соединения с жидкостной камерой. Переходники на концах отверстий не должны препятствовать полному осушению камеры.

А.1.2 Жидкостная камера (одно отверстие)

Нижняя секция или жидкостная камера (см. рисунок А.1) представляет собой цилиндрический сосуд таким же внутренним диаметром, как воздушная камера, и таким объемом, чтобы соотношение объемов воздушной и жидкостной камер было 3,95-4,05.

На одном конце жидкостной камеры предусмотрено отверстие диаметром около 13 мм для соединения с воздушной камерой. Внутренняя поверхность камеры, прилегающей к переходнику, должна быть с уклоном для обеспечения полной осушки камеры при переворачивании. Другой конец жидкостной камеры должен быть полностью закрыт.

А.1.3 Жидкостная камера (два отверстия)

Для отбора проб из закрытых сосудов нижняя секция или жидкостная камера (рисунок А.1) должна быть в основном такой же, как и у жидкостной камеры (А.1.2), с той разницей, что 6-мм клапан присоединяют ближе к основанию жидкостной камеры, а проходной полностью открытый 13-мм клапан вводят в соединение между камерами. Объем жидкостной камеры, включая только вместимость, заключенную клапанами, должен соответствовать требованиям к объемам (А.1.2).

Примечание - При определении вместимости жидкостной камеры с двумя отверстиями (рисунок А.1) вместимость жидкостной камеры рассматривают ниже 13-мм клапана. Объем этого клапана, включающий участок соединения, постоянно прикрепленного к жидкостной камере, считают частью вместимости воздушной камеры. Допускается использовать аппарат типа ЛДП [2].

А.1.4 Метод соединения воздушной и жидкостной камер

Можно применять любой метод соединения воздушной и жидкостной камер, исключающий потери испытуемого продукта, компрессию и утечку из собранного аппарата при испытании. Для предотвращения испарения продукта при сборке желательно, чтобы на жидкостной камере находилась заглушка с наружной резьбой, соответствующей переходнику. Чтобы предотвратить компрессию воздуха при сборке соответствующего резьбового соединения, можно использовать вентиляционное отверстие, обеспечивающее атмосферное давление в воздушной камере.

Предостережение - Имеющееся в наличии оборудование не может обеспечить избежания пневматических эффектов.

Перед использованием аппаратуры следует установить, что процесс сборки не приводит к сжатию воздуха в воздушной камере. Для этого плотно закрывают отверстие жидкостной камеры и монтируют аппаратуру обычным способом, используя манометр на 0-35 кПа. Любое увеличение давления на манометре указывает, что аппаратура не соответствует техническим требованиям и следует обращаться к изготовителю за консультацией и ремонтом.

А.1.5 Вместимость воздушной и жидкостной камер

Для установления объемного соотношения камер в пределах 3,95-4,05 берут объем воды больше, чем требуется для наполнения жидкостной и воздушной камер. Жидкостную камеру полностью наполняют водой, разность исходного и оставшегося объема составит объем жидкостной камеры. Затем после соединения камер воздушную камеру заполняют дополнительным количеством воды до места соединения манометра, разность объемов составит объем воздушной камеры.

Воздушная камера

Жидкостная камера с двумя отверстиями

Жидкостная камера с одним отверстием

1 - присоединительный внутренний диаметр 13 мм; 2 - вентиляционное отверстие; 3 - присоединительный внутренний диаметр 5 мм; 4 - присоединительный внешний диаметр 13 мм; 5 - клапан 13 мм; 6 - клапан 6 мм

Рисунок А.1 - Бомба для определения давления пара

А.1.6 Проверка на отсутствие утечек

Перед применением нового аппарата, а в дальнейшем по мере необходимости его следует проверять на утечку, наполняя воздухом под давлением до 700 кПа и полностью погружая в водяную баню. Применяют аппарат, который при проверке не дает утечки.

А.2 Манометр

Применяют манометр типа Бурдона с определенными характеристиками диаметром 100-150 мм, предусматривающий номинальное 6-мм резьбовое наружное соединение, имеющее канал диаметром не менее 5 мм от трубки Бурдона в атмосферу.

Датчик давления (манометр) с определенными пределами измерения выбирают в зависимости от давления паров испытуемой пробы в соответствии с таблицей 1.

Таблица 1

В килопаскалях

Давление пара по Рейду

Диапазон шкалы

Числовые интервалы, не более

Промежуточная градуировка, не более

До 27,5 включительно

0-35

5,0

0,5

(0,275)

(0-0,350)

(0,050)

(0,005)

До 28,0

0-30,5

5,1

0,5

20-75

0-100

15

0,5

(0,200-0,750)

(0-1,0)

(0,150)

(0,005)

20,4-76,5

0-91,8

15,3

0,5

70-180

0-200

25

1,0

(0,700-1,800)

(0-2,000)

(0,250)

(0,010)

71,4-186,3

0-204,0

25,5

1,0

70-250

0-300

25

1,0

(0,700-2,500)

(0-3,000)

(0,250)

(0,010)

71,4-255,0

0-306,0

25,5

1,0

200-375

0-400

50

1,5

(2,000-3,750)

(0-4,000)

(0,500)

(0,015)

204,0-322,5

0-408,0

51,0

1,5

350 и свыше

0-700

50

2,5

(3,500)

(0-7,000)

(0,5000)

(0,025)

Св. 357,0

0-765,0

51,0

2,5

Следует использовать только точные приборы.

Если показание прибора отличается от показания манометра (или прибора с весовой нагрузкой при испытании давления выше 180 кПа) более чем на 1 % предела шкалы, измерительный прибор считают неточным. Например, отклонение при калибровке не должно превышать 0,3 кПа для прибора диапазоном 0-35 кПа или 0,9 кПа для прибора с диапазоном 0-100 кПа.

Примечание - Можно использовать измерительные приборы диаметром 90 мм в диапазоне 0-30 кПа. Допускается использовать пружинный манометр класса точности не ниже 0,6 по ГОСТ 2405 или образцовый деформационный манометр. Пружинный манометр считают точным, если расхождение между его показателем и показателем ртутного манометра не превышает 1 % диапазона шкалы.

А.3 Баня с водяным охлаждением или равноценный холодильник

Размеры бани с водяным охлаждением должны обеспечивать полное погружение в нее контейнеров с пробой и жидкостных камер. Баня должна обеспечивать температуру 0-1 °С.

Примечание - Для охлаждения проб в процессе хранения или приготовления на стадии воздушного насыщения не следует применять твердую двуокись углерода. Двуокись углерода заметно растворяется в бензине, и ее применение может привести к получению ошибочных значений давления пара.

А.4 Водяная баня

Водяная баня должна быть таких размеров, чтобы аппарат был погружен на глубину не менее 25 мм выше верхней части воздушной камеры. Баня должна обеспечивать постоянную температуру (37,8 ± 0,1) °С. Для контроля температуры в баню погружают термометр до метки 37 °С.

А.5 Термометр

А.5.1 Для определения температуры воздушной камеры 37,8 °С используют термометр ТИН-12 по ГОСТ 400 или термометры со следующими характеристиками:

Диапазон измерения, °С34-42

ПогружениеОбщее

Цена деления, °С0,1

Удлиненная отметка на каждые, °С0,5

Цифровое обозначение через каждый 1 °С(кроме на 38 °С)

Погрешность шкалы, °С, не более0,1

Камера расширения, допускающая нагрев до100 °С

Общая длина термометра, мм275 ± 5

Диаметр термометра, мм6-7

Длина ртутного резервуара, мм25-35

Диаметр ртутного резервуара, ммНе менее 5, но не более

диаметра термометра

Расстояние от основания ртутного резервуара до отметки 34,4 °С, мм35-150

Расстояние от основания ртутного резервуара до отметки 42 °С, мм215-234

Расстояние от основания ртутного резервуара до камеры сжатия, мм, не более60

Диаметр расширения ртутного капилляра, мм8-10

Длина расширения ртутного капилляра, мм4-7

Расстояние от основания ртутного резервуара до основания расширения

ртутного капилляра, мм112-116

Допускается использовать термометр стеклянный ртутный ТЛ-4 № 2 [3].

А.5.2 Для водяной бани используют термометр, указанный в А.5.1.

А.6 Ртутный манометр

Применяют ртутный манометр с диапазоном, пригодным для проверки применяемого измерительного прибора. Шкала манометра должна быть градуирована на 1 мм или 0,1 кПа.

Допускается использовать стеклянный ртутный манометр, представляющий собой U-образную стеклянную трубку диаметром 5-8 мм, длиной 1000 мм, заполненную ртутью и снабженную шкальной пластинкой с диапазоном измерения от 0 до 700-800 мм и ценой наименьшего деления 1 мм или образцовый деформационный манометр.