5.1.2. Рекомендуемые режимы термической обработки сплавов в отливках приведены в приложении В.

5.1.3. Механические свойства сплавов, при изготовлении отливок из которых применялись способы литья и термическая обработка, не приведенные в таблице 2, должны соответствовать требованиям нормативной документации на отливки.

5.2. Методы испытаний

5.2.1. Химический состав определяют по ГОСТ 25086, ГОСТ 11739.1 - ГОСТ 11739.24, ГОСТ 7727. Допускается определять химический состав другими методами, не уступающими по точности стандартным.

При разногласиях в оценке химического состава анализ проводят по ГОСТ 25086, ГОСТ 11739.1 - ГОСТ 11739.24.

5.2.2. Механические свойства сплавов определяют на отдельно отлитых образцах или образцах, выточенных из специально отлитой заготовки или из прилитой к отливке заготовки, отлитых в кокиль или песчаную форму.

5.2.3. Форма и размеры отдельно отлитых образцов при литье в песчаные формы и кокиль должны соответствовать приведенным на рисунке 2 и в таблице 3, а при литье под давлением - на рисунке 3.

Таблица 3

Размеры, мм

Номер образца

d0

l0

l

D

h1

h2

r

L

2

12

60

72

18

52

12

25

200

1

10

50

60

15

40

10

25

160

Рисунок 2 - Форма и размеры образца при литье в песчаную форму и кокиль

Рисунок 3 - Форма и размеры образца при литье под давлением

Рисунок 4 - Заготовка для вырезки образцов

Допускаемая разность наибольшего и наименьшего диаметров по длине рабочей части образца должна быть не более 0,3 мм.

Допускается уменьшение длины головки образца, при этом длина головки определяется конструкцией захвата испытательной машины.

Для крупных образцов (литье в песчаные формы, в кокиль) расчетная длина образца должна быть l0 = 5 d0.

Рекомендуется горизонтальное расположение отдельно отливаемых образцов в форме.

5.2.4. Заготовки, из которых вытачивают образцы, должны иметь диаметр 20 мм и должны соответствовать рисунку 4. Размеры, указанные на рисунке 4, являются справочными и даны для конструирования кокиля. Форма и размеры выточенных образцов должны соответствовать ГОСТ 1497. Диаметр расчетной длины образцов должен быть не менее 5 мм, расчетная длина l0 = 5d0.

Форма и размеры прилитых заготовок при литье в кокиль или песчаные формы устанавливаются в нормативной документации или изготовителем.

5.2.5. Форма и размеры отдельно отлитых образцов при литье по выплавляемым моделям должны определяться нормативной документацией. Расчетная длина должна быть l0 = 5d0.

Форма и размеры прилитых или отдельно отлитых заготовок устанавливаются изготовителем или нормативной документацией на отливки.

5.2.6. Отдельно отлитые образцы при всех видах литья испытывают с литейной коркой. Допускается нарушение сплошности литейной корки в местах зачистки поверхности образца.

5.2.7. При определении механических свойств на образцах с расчетной длиной менее 60 мм для сплавов, у которых установлен минимальный показатель относительного удлинения менее 1 %, относительное удлинение не определяют.

5.2.8. Способ литья и вид термообработки образцов для испытания должны соответствовать способу литья и режиму термообработки, установленным для отливок из этих сплавов. Допускается для всех видов литья проводить проверки механических свойств на образцах, отлитых в кокиль или песчаные формы.

5.2.9. Показатели механических свойств образцов, вырезанных из отливок, должны быть установлены нормативной документацией на отливки.

Механические свойства определяют по ГОСТ 1497, твердость по Бринеллю - по ГОСТ 9012 при диаметре шарика 10 мм и нагрузке 9806 Н (1000 кгс) или при диаметре шарика 5 мм и нагрузке 2450 Н (250 кгс) с выдержкой в обоих случаях от 10 до 30 с.

Газовая пористость отливок определяется непосредственно на отливках или образцах, вырезанных из отливок, в соответствии с 4.3.8.

ПРИЛОЖЕНИЕ А

(справочное)

Термины, применяемые в стандарте, и их определения

Таблица A.1

Термин

Определение

1. Шлаковые включения

Полость, заполненная шлаком

2. Шлак

Расплав или твердое вещество переменного состава, покрывающее поверхность жидкого продукта при металлургических процессах, состоящие из пустой породы, флюсов, золы топлива, сульфидов и оксидов, продуктов взаимодействия обрабатываемых материалов и футеровки плавильных агрегатов

3. Усадочные раковины

Открытая или закрытая полость с грубой шероховатой, иногда окисленной поверхностью, образовавшаяся вследствие усадки при затвердении металла

4. Усадочная рыхлость или центральная пористость

Поры, располагающиеся в центральной по сечению части чушек. Образуются по тем же причинам, что и усадочная раковина. Располагаются в верхней половине чушки

5. Газовая пористость

Дефект в виде мелких пор, образовавшихся в результате выделения газов из металла при его затвердении

6. Оксидная пленка

Дефект в виде металлического оксидного слоя на поверхности металла

7. Ликвация

Дефект в виде местных скоплений химических элементов или соединений, возникших в результате избирательной кристаллизации при затвердении

8. Рыхлота

Дефект в виде скопления мелких усадочных раковин

9. Инородные включения

Дефект в виде инородного металлического или неметаллического включения, имеющего поверхность раздела с металлом чушки

ПРИЛОЖЕНИЕ Б

(обязательное)

Методика определения газовой пористости в алюминиевых литейных сплавах

Б.1. Изготовление макрошлифов

Б.1.1. При определении пористости в алюминиевых литейных сплавах усадочная рыхлость или центральная пористость исключается.

Б.1.2. Для определения газовой пористости темплеты, вырезанные из чушек по 4.2.6, отливки или образцы, вырезанные из отливок, обрабатывают до шероховатости Ra не более 1,6 мкм. При обработке с эмульсией поверхность темплета очищают бензином или ацетоном.

Б.1.3. Макрошлиф готовят из темплетов последовательным шлифованием на шлифовальных шкурках различной зернистости: 80-100 мкм, 40-50 мкм, мкм, промывают проточной водой и просушивают фильтровальной бумагой.

Подготовку макрошлифа можно производить другими способами, обеспечивающими шероховатость не более 1,6 мкм.

Б.1.4. Для определения газовой пористости макрошлиф травят %-м водным раствором едкого натра (NaOH) при температуре 60-80 °С. Макрошлиф погружают в реактив и выдерживают в течение с (не выявляя макроструктуры), затем промывают проточной водой и просушивают фильтровальной бумагой. При необходимости осветления поверхности макрошлиф опускают %-й раствор азотной кислоты на 2-5 с, промывают проточной водой и просушивают фильтровальной бумагой.

Б.2. Проведение испытаний

Б.2.1. Для определения газовой пористости необходимо пользоваться шкалой, приведенной на рисунке Б.1. Степень пористости макрошлифов в баллах устанавливают сравнением их с эталонами шкалы.

Б.2.2. Газовая пористость темплетов чушек определяется на трех квадратах площадью 1 см2 каждый (рисунок Б.2). Количество пор и размер пор определяют как среднее арифметическое трех измерений.

При наличии отклонений по среднему количеству, размеру или процентному содержанию пор в сторону увеличения показатели пористости относят к более высокому баллу пористости.

Последовательность нанесения квадратов:

а) на поверхности макрошлифа провести диагональ;

б) измерить диагональ;

в) разделить диагональ на две равные части для определения центра среднего квадрата;

г) нанести средний квадрат на макрошлиф так, чтобы диагональ макрошлифа делила его на две равные части, а боковые стороны квадрата были перпендикулярны ей;

д) измерить расстояние от края макрошлифа до боковой стороны квадрата по диагонали темплета;

е) полученное расстояние разделить пополам для определения центров остальных двух квадратов;

ж) нанести остальные два квадрата (см. подпункт г).

Газовую пористость отливок определяют на трех квадратах площадью 1 см2 каждый. Расположение квадратов произвольное в зависимости от конфигурации и размеров отливок, если нет особых требований в конструкторской документации.

На малогабаритных отливках газовую пористость допускается определять на меньшем количестве квадратов.

Б.2.3. Балл пористости, определенный по трем квадратам на двух макрошлифах темплетов чушек, распространяют на всю плавку.

Б.2.4. Контроль пористости проводят визуально, невооруженным глазом. Для определения диаметра пор можно пользоваться оптическими приборами с увеличением до 10 раз.

Б.2.5. Шлиф состоит из пяти эталонов:

балл 1 - мелкая пористость;

балл 2 - пониженная пористость;

балл 3 - средняя пористость;

балл 4 - повышенная пористость;

балл 5 - высокая пористость.

Б.2.6. Допускаемое количество пор на 1 см2 поверхности шлифа и диаметр их в зависимости от номера эталона приведены в таблице Б.1.

Рисунок Б.1 - Шкала пористости алюминиевых сплавов

Рисунок Б.2 - Схема расположения квадратов на макрошлифе

Таблица Б.1

Номер эталона

Диаметр пор, мм

Количество пор на 1 см2, шт.

1

До 0,1

До 5

2

До 0,1

До 8

» 0,2

» 2

3

До 0,3

До 12

» 0,5

» 3

4

До 0,5

До 14

» 1,0

» 6

5

До 0,5

До 15

» 1,0

» 8

Св. 1,0

» 2

Б.2.7. Пользоваться эталонами степени пористости можно независимо от марки сплава.

ПРИЛОЖЕНИЕ В

(рекомендуемое)

Рекомендуемые режимы термической обработки сплавов

Таблица B.1

Марка сплава

Вид термической обработки

Закалка

Старение

температура нагрева, ??С

время выдержки, ч

охлаждающая среда, температура, ??С

температура нагрева, ??С

время выдержки, ч

АК12 (АЛ2)

Т2

-

-

-

300±10

2-4

АК9 (АК9)

Т1

-

-

-

175±5

5-17

Т6

535±5

2-6

Вода, 20-100

175±5

10-15

АК9ч (АЛ4)

Т1

-

-

-

175±5

5-17

Т6

535±5

2-6

Вода, 20-100

175±5

10-15

АК9пч (АЛ4-1)

Т1

-

-

-

175±5

5-17

Т6

535±5

2-6

Вода, 20-100

175±5

10-15

АК8 (АЛ34)

Т1

-

-

-

190±5

3-4

Т2

-

-

-

300±10

2-4

Т4

535±5

10-16

Вода, 20-100

-

Т5

535±5

10-16

Вода, 20-100

175±5

6

АК7 (АК7)

АК7ч (АЛ9)

Т5

535±5

2-7

Вода, 20-100

150±5

1-3

Т2

-

-

-

300±10

2-4

Т4

535±5

2-6

Вода, 20-100

-

Т5

535±5

2-6

Вода, 20-100

150±5

1-3

АК7ч (АЛ9)

Т5

535±5

2-6

Вода, 20-100

Двухступенчатый нагрев:

1) 190±10

0,5

2) 150±5

2

Т6

535±5

2-6

Вода, 20-100

200±5

2-5

Т7

535±5

2-6

Вода, 80-100

225±10

3-5

Т8

535±5

2-6

Вода, 80-100

250±10

3-5

АК7пч (АЛ9-1)

Т2

-

-

-

250±10

2-4

Т4

535±5

2-12

Вода, 20-50

-

-

Т5

535±5

2-12

Вода, 20-50

150±5

3-10

Т6

535±5

2-12

Вода, 20-50

175±5

3-10

Т7

535±5

2-12

Вода, 80-100

225±10

3-5

Т8

535±5

2-12

Вода, 80-100

250±10

3-5

АК5М2 (АК5М2)

Т5

525±5

3-5

Вода, 20-100

175±5

5-10

Т8

525±5

3-5

Вода, 20-100

250±10

3-5

АК5М (АЛ5)

Т1

-

-

-

180±5

5-10

Т5

525±5

3-5

Вода, 20-100

175±5

5-10

Т5

Двухступенчатый нагрев:

Т5

1) 515±5

3-5

-

-

-

2) 525±5

1-3

Вода, 20-100

175±5

5-10

Т6

525±5

3-5

Вода, 20-100

200±5

3-5

Т7

525±5

3-5

Вода, 20-100

230±10

3-5

Двухступенчатый нагрев:

1) 515±5

3-5

-

-

-

2) 525±5

1-3

Вода, 20-100

230±10

3-5

АК5Мч (АЛ5-1)

Т1

-

-

-

180±5

5-10

Т5

525±5

3-10

Вода, 20-100

175±5

5-10

Т5

Двухступенчатый нагрев:

1) 515±5

3-7

-

-

-

2) 525±5

2-5

Вода, 20-100

175±5

5-10

Т7

525±5

3-10

Вода, 20-100

230±10

3-5

Т7

Двухступенчатый нагрев:

1) 515±5

3-7

-

-

-

2) 525±5

2-5

Вода, 20-100

230±10

3-5

АК6М2 (АК6М2)

Т1

-

-

-

180±5

5-10

Т5

525±5

3-5

Вода, 20-100

175±5

5-10

АК8М (АЛ32)

Т1

-

-

-

200±10

5-8

Т2

-

-

-

280±10

5-8

Т5

Двухступенчатый нагрев:

1) 505±5

4-6

-

-

-

2) 515±5

4-8

Вода, 20-100

150±5

10-15

Т6

515±5

2-8

Вода, 20-50

170±5

8-16

Т6

515±5

2-8

Вода, 20-50

Двухступенчатый нагрев:

1) 130±5

2-3

2) 160±5

4-6

Т6

Двухступенчатый нагрев:

1) 505±5

4-6

-

-

-

2) 515±5

4-8

Вода, 20-100

170±5

8-16

Т6

505±5

4-6

-

-

-

Т6

515±5

4-8

Вода, 20-100

Двухступенчатый нагрев:

1) 130±5

2-3

2) 160±5

4-6

Т7

Двухступенчатый нагрев:

1) 505±5

4-6

-

-

-

2) 515±5

4-8

Вода, 80-100

230±5

3-5

АК5М4 (АК5М4) АК5М7 (АК5М7)

Т6

490±10

5-7

Вода, 20-100

170±10

5-7

Т1

-

-

-

180±10

1-5

Т6

490±10

5-7

Вода, 20-100

185±5

1-2

АК8М3 (АК8М3) АК8М3ч (ВАЛ8)

Т6

500±10

5-7

Вода, 20-100

180±10

5-10

Т4

Трехступенчатый нагрев:

1) 490±5

4-6

-

-

-

2) 500±5

4-6

-

-

-

3) 510±5

4-6

Вода, 20-100

-

-

Т5

510±5

4-6

Вода, 20-100

160±5

6-12

АК9М2 (АК9М2)

Т6

515±5

5-7

Вода, 20-100

200±5

1-2

АК12ММгН (АЛ30)

Т6

520±5

4-6

Вода, 20-100

180±5

6-8

Т1

-

-

-

190±10

6-12

Т6

520±5

1,5-6

Вода, 20-70

180±5 или 200±5

или 6-8

АК12М2МгН (АЛ25)

АК5 (АЛ19)

Т1

-

-

-

210±10

10-12

Т4

545

10-12

Вода, 20-100

-

-

АМ5 (АЛ19)

Т4

Двухступенчатый нагрев:

1) 530±5

5-9

-

-

-

2) 545±3

5-9

Вода, 20-100

-

-

Т5

545

10-12

Вода, 20-100

175±5

3-6

Двухступенчатый нагрев:

1) 530±5

5-9

-

-

-

2) 545

5-9

Вода, 20-100

175±5

3-6

Т7

545

10-12

Вода, 80-100

250±10

3-10

Т7

Двухступенчатый нагрев:

1) 530±5

5-9

-

-

-

2) 545

5-9

Вода, 80-100

250±10

3-10

АМ4,5Кд (ВАЛ10)

Т4

545

10-14

Вода, 20-100

Двухступенчатый нагрев:

1) 535±5

5-9

-

-

-

2) 545

5-9

Вода, 20-100

-

-

Т5

545

10-14

Вода, 20-100

155±5

3-8

Т5

Двухступенчатый нагрев:

1) 535±5

5-9

Вода, 20-100

155±5

3-8

2) 545

5-9

-

-

-

Т6

545

10-14

Вода, 20-100

170±5

6-10

Т6

Двухступенчатый нагрев:

1) 535±5

5-9

-

-

-

2) 545

5-9

Вода, 20-100

170±5

6-10

Т7

545

10-14

Вода, 80-100

250±5

3-10

Т7

Двухступенчатый нагрев:

1) 545±5

5-9

-

-

-

2) 545

5-9

Вода, 80-100

250±5

3-10

АМг6 (АЛ23)

Т4

430±10

20

Вода, 100 или масло, 20

-

-

АМг6лч (АЛ23-1)

Т4

430±10

20

Вода, 100 или масло, 20

-

-

АМг10 (АЛ27)

Т4

430±10

20

Вода, 100

-

-

АК7Ц9 (АЛ11)

Т2

300±10

2-4

-

-

-

АЦ4Мг (АЛ24)

Т5

580±5

4-6

Вода, 100

120±5

8-10

АМг11 (АЛ22)

Т4

425±5

15-20

Вода, 100 или масло, 40-50

175±5

5-17

АК9с

Т1

-

-

Т6

535±5

2-6

Вода, 20-100

175±5

10-15

Примечания

1. Двухступенчатый режим нагрева под закалку для сплавов АК5М (АЛ5), АМ5 (АЛ19), АК8М (АЛ32), АМ4, 5Кд (ВАЛ10) рекомендуется применять при наличии массивных (выше 40 мм) участков в деталях во избежание пережога.

2. С целью уменьшения внутренних напряжений крупногабаритные сложные по конфигурации детали рекомендуется закаливать в воде с температурой 80-100 ??С.

3. При необходимости получения более высокой (на %) прочности деталей из сплавов АК9ч (АЛ4), АК9пч (АЛ9-1) допускается повышение температуры нагрева под закалку до (545±5) °С при обязательном снижении содержания железа до 0,1-0,2 % и марганца для сплава АЛ4 до 0,25-0,35 %.

4. Получение оптимальных механических свойств сплава АК9пч (АЛ4-1) (режим Т5) обеспечивается соблюдением перерыва между закалкой и искусственным старением в течение 1-3 ч.