для проводов, на которых проектом предусмотрена плавка гололеда ?? 1;

б) при расчете по деформациям: в I, II, III районах - 0,5; в IV, V - 0,7;

в) при расчете по образованию трещин в железобетонных опорах - 0,3.

2.32. Нормативное значение ветрового давления, Па (скорость ветра, м/с) при гололеде принимать по табл. 7.

Таблица 7

Гололедные районы СССР

I

II

III

IV

V

qо, Па

92

100

117

167

192

vo, м/с

12

13

14

17

18

2.33. Местные условия защищенности контактной сети при определении давления ветра в заданных условиях при гололеде следует учитывать в соответствии с указаниями п. 2.11.

Значения средней и пульсационной составляющих нормативной ветровой нагрузки при гололеде определяют по указаниям пп. 2.12-2.16.

Ветровую нагрузку на контактные провода следует определять с учетом указаний п. 2.28.

2.34. Расчет проводов и длин пролетов следует выполнять на нормативное значение средней составляющей ветровой нагрузки при гололеде, умноженной на коэффициент 1,10.

2.35. При расчете ветровой нагрузки, передаваемой с проводов, покрытых гололедом, на опорные, поддерживающие и фиксирующие устройства, необходимо принимать следующие коэффициенты надежности по нагрузке:

а) при расчете по прочности - 1,3;

б) при расчете по деформациям - 0,85;

в) при расчете по образованию трещин в железобетонных опорах - в I, II гололедных районах - 0,55; III, IV, V - 0,45.

2.36. Гололедную нагрузку следует находить при температуре, определяемой согласно указаниям главы СНиП по нагрузкам и воздействиям.

2.37. Гололедную нагрузку на ферму жесткой поперечины определяют для отсека фермы и приводят затем к нагрузке на 1 м ее длины.

Расчетную гололедную нагрузку qгфр Н/м определяют по формуле:

, (12)

где nГ - коэффициент перегрузки для гололедной нагрузки на ферму, принимаемый согласно требованиям главы СНиП по нагрузкам и воздействиям; So - поверхность отсека, подверженная обледенению, м2.

So = 0,65 S.

Здесь S - полная поверхность отсека фермы, м2;

S = S??пnп + S??пвnпв + S??ркnрк + S??рпnрп + S??ркгnркг + S??рпгnрпг + S??рксnркс;

S??п, S??пв, S??рк, S??рп, S??ркг, S??рпг, S??ркс - общая поверхность нижнего пояса (п), верхнего пояса (пв), раскоса (рк), распорки (рп), раскоса горизонтальной грани (ркг), распорки горизонтальной грани (рпг), раскосов в поперечном сечении фермы (ркс).

Sп = 4dlo; S??пв = 4dвlo;

;

;

;

;

;

вф - высота фермы, аф - ширина фермы, dcp - определяют по формуле (7), nп; nпв; nрк; nрп; nркг; nрпг; nркс - число поясов нижних, верхних, раскосов и распорок на вертикальных гранях, раскосов и распорок на горизонтальных гранях, а также раскосов в поперечных сечениях отсека фермы (соответственно).

Температурные воздействия

2.38. Расчет натяжения некомпенсированных проводов и передаваемых ими усилий на конструкции следует производить на основании данных об изменениях температуры в районе электрифицируемого участка в соответствии с требованиями главы СНиП по строительной климатологии и геофизике, а при отсутствии необходимых материалов в этих Нормах - по данным ближайших метеостанций.

2.39. Нормативное значение минимальной температуры воздуха (°С),определяют по формуле:

tнmin = t1 ??1 - 6,

где t1 - многолетняя средняя месячная температура воздуха в январе, принимаемая по карте 5 обязательного приложения 5 главы СНиП по нагрузкам и воздействиям или по СНиП строительной климатологии и геофизики; ??1 - отклонение средней суточной температуры от средней месячной (t1), принимаемой главой СНиП по нагрузкам и воздействиям.

При наличии многолетних (не менее 20 лет) данных местных метеостанций допускается определять нормативное значение температуры воздуха по формуле:

,

где - средняя суточная температура наиболее холодных суток в январе; tmin - абсолютная минимальная температура воздуха.

2.40. Расчетное значение минимальной температуры воздуха равно абсолютной минимальной температуре.

2.41. При определении нагрузок, передаваемых на конструкции контактной сети от натяжения некомпенсированных проводов при температурных воздействиях, необходимо принимать следующие значения коэффициентов к величине натяжения:

Для некомпенсированного Для одиночных проводов

несущего троса (усиливающих, питающих)

При расчете по:

прочности 1,1 1,2

деформациям 1,0 1,0

образованию трещин в

железобетонных опорах 0,9 0,8

2.42. Нормативное и расчетное значения максимальной температуры воздуха следует принимать равными абсолютной максимальной температуре воздуха tmax с учетом воздействия солнечной радиации (прямой и рассеянной).

Эквивалентное увеличение максимальной температуры воздуха в результате нагрева проводов солнечной радиацией определяют по выражению:

tр = 0,0162??max,

??max - максимальное значение суммарной солнечной радиации в Вт/м2, принимаемое по табл. 5 СНиП 2.01.01-82 по строительной климатологии м геофизике.

Для районов, расположенных между 46 и 56 градусами с. ш., температуру нагрева проводов солнечной радиацией tр можно принять равной 14 °С.

2.43. При определении длины анкерных участков цепных подвесок изменение температуры воздуха следует определять как среднее между среднегодовым и нормативным значениями.

2.44. Температуру беспровесного положения контактного провода следует определять по выражению:

tо = - t',

где - среднегодовая температура воздуха, определяемая по СНиП «Строительная климатология и геофизика»; t' - поправка, равная 20-25° при одном и 15-20° при двух контактных проводах.

Более точно температуру беспровесного положения контактного провода можно определить, исходя из следующих соотношений:

если значения ?? (после округления до 5 °С), то равно 20 при одном, 15° при двух контактных проводах;

если > , то t?? соответственно равно 25 и 20 °С.

Здесь tн - средняя нормативная температура воздуха.

.

Монтажные нагрузки

2.45. Конструкции контактной сети (опоры, консоли, жесткие поперечины, кронштейны фиксаторов) следует проверять расчетом на действие монтажных нагрузок, возникающих при погрузке, разгрузке и перевозке, выполняемых в соответствии с требованиями «Инструкции по производству и приемке строительных и монтажных работ при электрификации железных дорог», ВСН 12-82, а также при монтаже как самих конструкций, так и располагаемых на них элементов контактной сети (проводов и др.).

2.46. При расчете конструкций на воздействие нагрузок, возникающих при погрузочно-разгрузочных работах и перевозке, должны быть рассмотрены схемы строповки и погрузки, вызывающие наибольшие усилия в конструктивных элементах.

Если возникающие при этом монтажные нагрузки приводят к необходимости увеличения сечений конструкции, то в проекте должны быть предусмотрены более рациональные схемы строповки и погрузки, по которым и определяют затем значения монтажных нагрузок.

Монтажные нагрузки при погрузке, разгрузке и перевозке конструкций следует определять с учетом коэффициентов; обусловленных динамическим воздействием:

при подъеме кранами 1,25

при перевозке транспортом 1,6

При проектировании типовых конструкций следует принимать коэффициент надежности по монтажной нагрузке равным 1,6.

2.47. Опоры и жесткие поперечины, перевозимые или складируемые в несколько рядов, нужно проверять расчетом на действие нагрузок от массы вышележащих конструкций на нижний ряд.

2.48. Опорные и поддерживающие конструкции необходимо проверять на нагрузки, возникающие при монтаже цепных подвесок и одиночных проводов, подвешиваемых со стороны поля. При этом полученные усилия необходимо умножать на коэффициент КД = 1,25, учитывающий динамическое воздействие нагрузки. Если методы монтажа отличаются от приведенных в ВСН 12-82, то величины этих нагрузок следует определять в зависимости от методов монтажа. Если намечаемый метод монтажа создает нагрузки, недопустимые для типовых конструкций, то должны быть внесены изменения в метод монтажа или в конструкцию.

2.49. Горизонтальные и наклонные элементы решетки металлических опор и жестких поперечин при угле наклона 30° и менее, а также консоли и кронштейны фиксаторов проверяют расчетом на силу от массы монтера, равный 1000 Н.

2.50. Анкерные опоры и их оттяжки следует рассчитывать на усилия вдоль пути от анкеруемых проводов. При этом для определения расчетной нагрузки величину нормативного натяжения в проводах в основных сочетаниях следует увеличивать на 15 %.

Нагрузки от обрыва проводов

2.51. Определение нагрузок аварийного режима на консольные опоры контактной сети следует производить для случая обрыва несущего троса цепных контактных подвесок, дающего наиболее невыгодные сочетания и наибольшие величины действующих на конструкцию сил; эти силы превышают нагрузки, возникающие при обрыве контактных или усиливающих проводов.

Нагрузки при обрыве проводов на опорах питающих линий определяют, исходя из условий обрыва одного из проводов, подвешенных на опоре, дающего наибольший изгибающий или крутящий момент на опору. Продольная (вдоль линии) сила, приложенная в точке крепления провода при его обрыве, принимается равной 0,5 наибольшего натяжения провода, подвешенного на металлической опоре, и 0,3 наибольшего натяжения провода при его подвеске на железобетонной опоре. Нагрузки на концевые, угловые и анкерные опоры при обрыве проводов питающих и отсасывающих линий определяют по Правилам устройства электроустановок (ПУЭ). При этом нагрузки определяют из условий обрыва проводов одной линии, дающих наибольший изгибающий или крутящий момент на опору. За линию принимаются провода, закрепленные на одной натяжной гирлянде.

2.52. Расчетную схему для определений усилий, действующих на консольные опоры контактной сети при обрыве проводов цепной подвески, следует принимать по рис. 7.

Рис. 7. Схема действия сил на опору при обрыве несущего троса

На конце консоли приложена вертикальная нагрузка QД Н,

QД = КДQс, (14)

где КД = 1,9 - динамический коэффициент; Qc - вес цепной контактной подвески, зависящий от типа применяемых проводов и длины пролета, Н.

Консоль (рис. 8) развернута на угол ??к к линии, перпендикулярной оси пути таким образом, что точка закрепления троса передвинута вдоль пути на величину hп, равную конструктивной высоте цепной контактной подвески. Угол ??к определяют из условия

.

Рис. 8. Расположение консоли (в плане) при действии максимальных сил, возникающих при обрыве проводов

Изгибающий момент МД создается вертикальной силой, приложенной на конце консоли

МД = аДQД + а1Qк + аТQн, (15)

где аТ - расстояние от оси опоры до точки крепления несущего троса, м; а1 - расстояние от оси опоры до центра тяжести консоли, м; Qк - вес консоли, Н; Qн - вес изолятора, Н.

Очертание эпюры изгибающих моментов соответствует приведенному на рис. 7. Работа опоры, имеющей разные значения моментов инерции сечения вдоль оси пути и перпендикулярно к ней, соответствует косому изгибу.

Составляющие изгибающего момента вдоль оси пути Ме и перпендикулярно к оси пути Мп нужно вычислять по формулам:

Mе = MДsin??к; (16)

Мп = MДсos??к, (17)

где МД - изгибающий момент в плоскости действия равнодействующей силы.

2.53. Нагрузку на конструкции контактной сети от обрыва несущего троса определяют для заданного типа контактной подвески, района по гололеду и длин пролетов. Для определения вертикальных сил, действующих при обрыве, следует принимать толщину стенки гололеда, равную 0,5 максимальной.

2.54. Расчет нагрузок на ригель жесткой поперечины в аварийном режиме следует выполнять для случая обрыва несущего троса в середине пролета контактной подвески одного из главных путей, дающего наиболее невыгодные сочетания и наибольшие величины действующих сил.

При расчете в аварийном режиме продольной нагрузки в опорных узлах поперечины следует рассматривать ту контактную подвеску, обрыв несущего троса которой даст максимальное значение продольной нагрузки.

Вертикальную нагрузку, действующую при обрыве проводов на жесткую поперечину, следует определять по формуле (14).

При расчете жесткой поперечины на вертикальную нагрузку от обрыва проводов действие продольной силы не учитывают.

При подвешивании контактной подвески на консольных стойках место приложения вертикальной нагрузки следует определять с учетом поворота консоли на угол ??к (см. п. 2.52).

2.55. Нагрузку вдоль оси пути на анкерные опоры при обрыве проводов следует определять по максимальной величине их натяжения с учетом коэффициента 1,15, обусловленного динамическим воздействием нагрузки при обрыве контактного провода или несущего троса.

2.56. Усилие вдоль пути, действующее при обрыве проводов компенсированной контактной подвески на анкерную опору средней анкеровки, нужно определять как сумму, состоящую из максимального натяжения в дополнительном тросе и 40 % натяжения в несущем тросе.

2.57. Продольную нагрузку на жесткие поперечины Рож, Н от обрыва несущего троса следует принимать в зависимости от веса контактной подвески с учетом гололедного отложения на проводах Qп Н, величины натяжения троса Т и длины узла подвешивания троса на ригеле ?? по выражению:

Рож = Р??ожКТК??, (18)

где

Р??ож = 0,3 + 0,4Qп; (19)

КТ - коэффициент, учитывающий величину натяжения Т несущего троса (рис. 9); К?? - коэффициент, учитывающий длину узла подвешивания ??, несущего троса на ригеле жесткой поперечины (рис. 10).

При подвешивании контактной подвески на консольных стойках и несущего троса компенсированной подвески на роликах расчет жесткой поперечины в аварийном режиме на продольную нагрузку не производят.

Рис. 9. Коэффициент, учитывающий величину натяжения несущего троса