3.7. Для ограничения влияния фундамента на уровень вибрации турбоагрегата предусмотрены предельные допуски деформации и кручения ригелей поперечных рам фундамента.

За четырехлетний (межремонтный) период эксплуатации относительный прогиб (отношение стрелы прогиба к длине плиты) не должен превышать 0,0001 при длине турбоагрегата до 40 м и 0,00015 при длине его 60-80 м. При промежуточных значениях длины турбоагрегата (40-60 м) допустимый относительный прогиб находится интерполяцией.

Деформации кручения ригелей под опорами роторов высокого и среднего давления, вызываемые тепловыми перемещениями турбины, не должны превышать ±0,6 мм/м.

3.8. При проектировании фундаментов под вспомогательное оборудование следует руководствоваться общими инструкциями и [7].

В табл. 5 представлены предельные значения амплитуд колебаний фундаментов вспомогательного оборудования, методика проведения обследования динамического состояния которых та же, что и фундаментов турбоагрегатов. Из-за малых габаритных размеров и более простой конструкции, отсутствия ряда факторов, вызывающих дополнительные динамические нагрузки (меньшее число опор агрегата, отсутствие газодинамического воздействия и т.д.), по сравнению с фундаментами турбоагрегатов проведение измерений вибрации фундаментов вспомогательного оборудования менее трудоемко, а наличие нормативных значений колебаний фундамента (см. табл. 5) делает оценку динамического состояния фундаментов вспомогательного оборудования менее сложной и более достоверной.

Таблица 5

Предельно допустимая амплитуда колебаний фундамента,

устанавливаемая заданием на проектирование

Машины

Предельно допустимая амплитуда колебаний А, мм

С вращающимися частями при частоте вращения, об/мин:

горизонтальных

вертикальных

менее 500

св. 500 до 750 вкл.

св. 750 до 1000 вкл.

св. 1000 до 1500 вкл.

св. 1500

0,2

Св. 0,2 до 0,15 вкл.

Св. 0,15 до 0,1 вкл.

Св. 0,1 до 0,05 вкл.

Св. 0,05

0,15

Св. 0,15 до 0,1 вкл.

Св. 0,1 до 0,06 вкл.

Св. 0,06

С кривошипно-шатунными механизмами при частоте вращения, об/мин:

для первой гармоники

для второй гармоники

менее 200

св. 1200 до 400 вкл.

св. 400 до 600 вкл.

св. 600

0,25

Св. 0,25 до 0,15 вкл.

Св. 0,15 до 0,1 вкл.

Св. 0,1

0,15

Св. 0,15 до 0,1 вкл.

Св. 0,1 до 0,05 вкл.

Св. 0,05

Дробилки конусные и шнековые

0,3

Дробилки молотковые

Как для машин с вращающимися частями

Кузнечные молоты

1,2(0,8*)

Прессы

0,25

Формовочные машины

0,5 или по ГОСТ 12.1.012-90 (при расположении на фундаментах рабочих мест)

Мельницы

0,1**

* При возведении фундаментов на всех водонасыщенных песках, а также на мелких и пылеватых маловлажных и влажных песках.

** Среднеквадратичесюе значение амплитуды колебаний.

Примечания: 1. Для промежуточных значений частоты вращения предельно допустимая амплитуда определяется интерполяцией.

2. Для машин с частотой вращения 200 об/мин и менее при высоте фундаментов более 5 м предельно допустимая амплитуда увеличивается на 20%

4. ОСОБЕННОСТИ ОБСЛЕДОВАНИЯ ДИНАМИЧЕСКОГО

СОСТОЯНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

4.1. Эксплуатационные динамические нагрузки строительных конструкций главного корпуса электростанции, в котором размещено основное и вспомогательное оборудование, как правило, невелики, и вызываемые ими напряжения в элементах конструкций значительно меньше напряжений от статической нагрузки.

Допустимый уровень вибрации этих конструкций определяется не только необходимостью обеспечения несущей способности конструкций при совместном действии статических и динамических нагрузок, но и пределами, которые исключают возможность вредного влияния на людей и технологический процесс.

Количественные характеристики допустимого уровня колебаний для промышленных сооружений при действии колебаний на людей в тяжелых производственных условиях приведены в табл.6.

Таблица 6

Характеристики воздействия колебаний на людей

в зависимости от скорости и ускорения гармонических

колебаний с амплитудой не более 1 мм

Характеристика воздействия колебаний на людей

Предельное ускорение колебаний Wмакс (мм/с2) для частот

от 1 до 10 Гц вкл.

Предельная скорость колебаний

Vмакс (мм/с) для частот

от 1 до 10 Гц вкл.

Неощутимы

10

0,16

Слабо ощутимы

40

0,64

Хорошо ощутимы

125

2

Сильно ощутимы (мешают)

400

6,4

Вредны при длительном воздействии

1000

16

Безусловно вредны

Св. 1000

Св. 16

Примечание.

А = 0,16 vln= 0,025 w/n2, (3)

где А — амплитуда или размах колебаний, мм;

v — скорость колебаний, мм/с;

w— ускорение колебаний, мм/с2;

n — частота колебаний, Гц.

Качественные оценки характера воздействия колебаний на людей, приведенные в табл. 6, могут быть использованы для любых сооружений и условий.

4.2. Перед началом измерения вибраций строительных конструкций в целях определения динамического состояния необходимо получить сведения, характеризующие расчетную схему конструкций:

тип конструкции;

размеры пролетов и поперечных сечений;

конструкции узлов соединений элементов;

конструкции элементов, постоянно дополняющих несущие конструкции (бетонная подготовка под полы и пр.);

распределение масс конструкции и присоединенных к ней конструкций;

другие конструктивные характеристики, влияющие на жесткость и массу конструкции;

характеристики прилегающего к строительным конструкциям оборудования с динамическими нагрузками: уровень вибрации на подшипниках, преобладающие направления вибрации, спектр возмущаемых колебаний, состояние предусмотренных проектом деформационных (антивибрационных) швов по периметру действующего оборудования, наличие не предусмотренных проектом жестких связей между каркасами технологического оборудования и строительными конструкциями и т.д.

4.3. Для выбора точек и направления вибрации рекомендуется следующая схема измерений.

4.3.1. Вначале регистрируются колебания при каком-то определенном (по возможности наиболее типичном) динамическом воздействии, которые обеспечивают выявление формы колебаний конструкции и спектра частот колебаний.

4.3.2. В результате выполнения первого этапа измерений следует выделить точки и направления регистрации вибраций, наиболее характерные для данного динамического процесса.

4.3.3. Установив приборы в этих характерных точках, можно получить зависимости измеряемых параметров (амплитуды, частоты и т.д.) от режимов источников вибрации (при этом синхронно регистрируется уровень вибрации на ее источнике и используется вибродатчик на источнике вибрации в качестве базового).

4.3.4. В качестве характерных точек на строительных конструкциях электростанции принимаются: середины пролетов несущих балок, плит перекрытия, ферм покрытия и т.д., узлы соединений этих элементов, середины высот колонн, стоек и зоны сопряжений этих элементов с перекрытием, полом, покрытием.

4.3.5. Приборы устанавливаются непосредственно на несущие поверхности элементов (в железобетонных элементах в зонах регистрации колебаний штукатурный слой отбивается).

4.3.6. В дополнение к измерениям вибрации при фактических режимах работы данных конструкций, определяющихся условиями их эксплуатации, рекомендуется регистрировать параметры вибрации строительных конструкций при изменении ступенями режимов источников вибрации (по согласованию со службой эксплуатации).

4.3.7. Вклад в вибрацию строительных конструкций нескольких ее источников определяется путем их поочередного отключения или включения.

4.4. Измерение основного тона свободных затухающих колебаний элементов строительных конструкций следует выполнять в пролетах несущих элементов. Установление частот свободных (собственных) колебаний необходимо при наличии резонансных явлений (при совпадении частот собственных колебаний конструкции с вынужденными колебаниями от источников вибрации).

Свободные затухающие колебания возбуждаются ударом через деревянную прокладку толщиной 3-4 см по конструкции в средней части ее пролета. Сила удара должна обеспечить в начальных 2-3 периодах колебаний значения амплитуд перемещений конструкции не меньше максимально допустимых технологий .производства и санитарно-гигиеническими ограничениями.

Прилегающее к строительным конструкциям оборудование во время измерений свободных колебаний должно быть по возможности полностью или частично отключено.

Резонансные зоны элементов строительных конструкций можно установить при включении или отключении прилегающего оборудования по характерным всплескам амплитуд на графике амплитудно-частотной характеристики, построенном по результатам измерений вибрации конструкций при наборе (сбросе) номинальной частоты вращения оборудования.

4.5. В случае если к колебаниям промышленного здания не предъявляются требования, определяемые санитарными норами или технологией производственных процессов, то помимо требований по органичению колебаний по несущей способности должны предъявляться требования по ограничению динамических прогибов. В табл. 7 даны рекомендации по ограничению динамического прогиба конструкций покрытий промышленных зданий.

Таблица 7

Амплитуды колебаний конструкций покрытия,

соответствующие предельно допустимому прогибу

Частота,

Гц

Амплитуда,

мм

Частота,

Гц

Амплитуда,

мм

1

2

3

4

5

6

8

10

2,5

1,111

0,625

0,4

0,278

0,156

10

15

20

25

50

75

100

0,1

0,067

0,05

0,04

0,02

0,013

0,01

Примечание. Для промежуточных значений частот колебаний амплитуды определяются по формулам:

А= 10/n2— для частот колебаний от 1 до 10 Гц вкл.;

А = 1/n— для частот колебаний св. 10 до 100 Гц вкл.

Здесь А — амплитуда колебаний конструкции от нормальной нагрузки, мм;

n — частота вынужденных колебаний, Гц.

При оценке прочности и выносливости колебания конструкций можно считать безопасными, если наибольшее динамическое перемещение балки, перекрытия и других конструкций, совершающих колебания, связанные с изгибом, не превышает 1/50000 длины пролета (за вычетом перемещения ее опор). В этом случае при проверке несущей способности конструкции можно не учитывать динамических нагрузок. Аналогично, если по результатам измерений выяснилось, что для колонн и стен здания, а также стоек площадок и этажерок разность горизонтальных динамических перемещений нижнего и верхнего концов колонны (стены, стойки) в пределах этажа не превышает 1/50000 высоты этажа, динамические нагрузки можно не учитывать при проверке несущей способности этих конструкций. При этом колебания измеряются в той точке конструкции, где их амплитуда наибольшая, и при таком режиме источника вибрации, при котором возбуждаются наиболее интенсивные колебания этой конструкции.

5. ИЗМЕРИТЕЛЬНАЯ АППАРАТУРА

5.1. При исследовании работы конструкций фундаментов применяется измерительная аппаратура, позволяющая измерять амплитуды, фазы и частоты собственных и вынужденных колебаний, а также деформации, по которым определяется напряженное состояние конструкции.

Наиболее распространенной виброизмерительной аппаратурой, которой оснащены современные тепловые электростанции, является балансировочный измерительный прибор (БИП) конструкции Энергоремонта.

Прибор позволяет измерять частоты, амплитуды и фазы колебаний, скорости и ускорения линейных компонентов колебательного процесса и наблюдать за фазой колебаний по развернутой записи. Пределы измерения параметров вибрации в диапазоне частот от 15 до 200 Гц следующие: двойная амплитуда виброскоростей от 0,5 до 3000 мм/с и двойная амплитуда виброускорений от 0,1 до 8 q. Погрешность при измерении амплитуды смещений в указанных пределах, отнесенная к верхнему пределу шкалы экрана и стрелочного прибора, не более ±10%, а в пределах от 10 до 400 мкм в диапазоне частот от 20 до 55 Гц не более ±5%.

Погрешность измерения виброскорости и виброускорения составляет ±15%.

Достоинством прибора является возможность определения фазы колебаний точек вибрирующей поверхности, благодаря чему можно установить форму колебаний фундаментов.

Прибор имеет выход для подключения к шлейфовому осциллографу для записи колебательного процесса на пленку или бумагу, что важно при определении частоты собственных колебаний.

5.2. Другим прибором, который может быть использован службой эксплуатации фундаментов, является портативный виброметр ВПМ-1, имеющий встроенные фильтры нижних частот с граничными частотами 25; 50 и 100 Гц и фильтры верхних частот с граничными частотами 50 и 100 Гц. Частотный диапазон измерения параметров вибрации от 10 до 1000 Гц. Диапазон измерения среднего квадратического значения: виброскорости — от 0,5 до 100 мм/с, размаха виброперемещения—от 2 до 1000 мкм. Масса прибора 2 кг.